Oxygen diffusion pathways in brownmillerite SrCoO2.5: influence of structure and chemical potential
To design and discover new materials for next-generation energy materials such as solid-oxide fuel cells (SOFCs), a fundamental understanding of their ionic properties and behaviors is essential. The potential applicability of a material for SOFCs is critically determined by the activation energy ba...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2014-08, Vol.141 (8), p.084710-084710 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 084710 |
---|---|
container_issue | 8 |
container_start_page | 084710 |
container_title | The Journal of chemical physics |
container_volume | 141 |
creator | Mitra, Chandrima Meyer, Tricia Lee, Ho Nyung Reboredo, Fernando A |
description | To design and discover new materials for next-generation energy materials such as solid-oxide fuel cells (SOFCs), a fundamental understanding of their ionic properties and behaviors is essential. The potential applicability of a material for SOFCs is critically determined by the activation energy barrier of oxygen along various diffusion pathways. In this work, we investigate interstitial-oxygen (Oi) diffusion in brownmillerite oxide SrCoO2.5, employing a first-principles approach. Our calculations indicate highly anisotropic ionic diffusion pathways, which result from its anisotropic crystal structure. The one-dimensional-ordered oxygen vacancy channels are found to provide the easiest diffusion pathway with an activation energy barrier height of 0.62 eV. The directions perpendicular to the vacancy channels have higher energy barriers for Oint diffusion. In addition, we have studied migration barriers for oxygen vacancies that could be present as point defects within the material. This in turn could also facilitate the transport of oxygen. Interestingly, for oxygen vacancies, the lowest barrier height was found to occur within the octahedral layer with an energy of 0.82 eV. Our results imply that interstitial migration would be highly one-dimensional in nature. Oxygen vacancy transport, on the other hand, could preferentially occur in the two-dimensional octahedral plane. |
doi_str_mv | 10.1063/1.4893950 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1154851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126567835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-4a2c7b7029aa019f33fe333b003fc40fee50eb2eb35b7c9e0dddbec217261abc3</originalsourceid><addsrcrecordid>eNpd0cFuEzEQBmALUdFQOPACyIILHDaM7fVu3BuKgFaqlANwtmzvmLjatYPtVZu3Z6sEDpzmMJ9-zegn5A2DNYNOfGLrdqOEkvCMrBhsVNN3Cp6TFQBnjeqguyQvS7kHANbz9gW55JL1AoRYEbd7PP7CSIfg_VxCivRg6v7BHAsNkdqcHuIUxhFzqEi_523a8bW8XnZ-nDE6pMnTUvPs6pyRmjhQt8cpODPSQ6oYazDjK3LhzVjw9XlekZ9fv_zY3jR3u2-32893jWuhq01ruOttD1wZA0x5ITwKISyA8IvwiBLQcrRC2t4phGEYLDq-_NQxY524Iu9OuanUoItbTnZ7l2JEVzVjst1ItqAPJ3TI6feMpeopFIfjaCKmuWgmpQJQSj3R9__R-zTnuLygOeOd7PqNkIv6eFIup1Iyen3IYTL5qBnop3o00-d6Fvv2nDjbCYd_8m8f4g-zrom7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126567835</pqid></control><display><type>article</type><title>Oxygen diffusion pathways in brownmillerite SrCoO2.5: influence of structure and chemical potential</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Mitra, Chandrima ; Meyer, Tricia ; Lee, Ho Nyung ; Reboredo, Fernando A</creator><creatorcontrib>Mitra, Chandrima ; Meyer, Tricia ; Lee, Ho Nyung ; Reboredo, Fernando A ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>To design and discover new materials for next-generation energy materials such as solid-oxide fuel cells (SOFCs), a fundamental understanding of their ionic properties and behaviors is essential. The potential applicability of a material for SOFCs is critically determined by the activation energy barrier of oxygen along various diffusion pathways. In this work, we investigate interstitial-oxygen (Oi) diffusion in brownmillerite oxide SrCoO2.5, employing a first-principles approach. Our calculations indicate highly anisotropic ionic diffusion pathways, which result from its anisotropic crystal structure. The one-dimensional-ordered oxygen vacancy channels are found to provide the easiest diffusion pathway with an activation energy barrier height of 0.62 eV. The directions perpendicular to the vacancy channels have higher energy barriers for Oint diffusion. In addition, we have studied migration barriers for oxygen vacancies that could be present as point defects within the material. This in turn could also facilitate the transport of oxygen. Interestingly, for oxygen vacancies, the lowest barrier height was found to occur within the octahedral layer with an energy of 0.82 eV. Our results imply that interstitial migration would be highly one-dimensional in nature. Oxygen vacancy transport, on the other hand, could preferentially occur in the two-dimensional octahedral plane.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4893950</identifier><identifier>PMID: 25173033</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Activation energy ; Anisotropy ; Brownmillerite ; Calcium aluminum ferrite ; Channels ; Chemical potential ; Crystal defects ; Crystal structure ; Diffusion barriers ; First principles ; Ion diffusion ; Lattice vacancies ; Migration ; Organic chemistry ; Oxygen ; Physics ; Point defects ; Solid oxide fuel cells ; Transport ; Vacancies</subject><ispartof>The Journal of chemical physics, 2014-08, Vol.141 (8), p.084710-084710</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-4a2c7b7029aa019f33fe333b003fc40fee50eb2eb35b7c9e0dddbec217261abc3</citedby><cites>FETCH-LOGICAL-c406t-4a2c7b7029aa019f33fe333b003fc40fee50eb2eb35b7c9e0dddbec217261abc3</cites><orcidid>0000000319003888 ; 0000000221803975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25173033$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1154851$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mitra, Chandrima</creatorcontrib><creatorcontrib>Meyer, Tricia</creatorcontrib><creatorcontrib>Lee, Ho Nyung</creatorcontrib><creatorcontrib>Reboredo, Fernando A</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Oxygen diffusion pathways in brownmillerite SrCoO2.5: influence of structure and chemical potential</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>To design and discover new materials for next-generation energy materials such as solid-oxide fuel cells (SOFCs), a fundamental understanding of their ionic properties and behaviors is essential. The potential applicability of a material for SOFCs is critically determined by the activation energy barrier of oxygen along various diffusion pathways. In this work, we investigate interstitial-oxygen (Oi) diffusion in brownmillerite oxide SrCoO2.5, employing a first-principles approach. Our calculations indicate highly anisotropic ionic diffusion pathways, which result from its anisotropic crystal structure. The one-dimensional-ordered oxygen vacancy channels are found to provide the easiest diffusion pathway with an activation energy barrier height of 0.62 eV. The directions perpendicular to the vacancy channels have higher energy barriers for Oint diffusion. In addition, we have studied migration barriers for oxygen vacancies that could be present as point defects within the material. This in turn could also facilitate the transport of oxygen. Interestingly, for oxygen vacancies, the lowest barrier height was found to occur within the octahedral layer with an energy of 0.82 eV. Our results imply that interstitial migration would be highly one-dimensional in nature. Oxygen vacancy transport, on the other hand, could preferentially occur in the two-dimensional octahedral plane.</description><subject>Activation energy</subject><subject>Anisotropy</subject><subject>Brownmillerite</subject><subject>Calcium aluminum ferrite</subject><subject>Channels</subject><subject>Chemical potential</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Diffusion barriers</subject><subject>First principles</subject><subject>Ion diffusion</subject><subject>Lattice vacancies</subject><subject>Migration</subject><subject>Organic chemistry</subject><subject>Oxygen</subject><subject>Physics</subject><subject>Point defects</subject><subject>Solid oxide fuel cells</subject><subject>Transport</subject><subject>Vacancies</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpd0cFuEzEQBmALUdFQOPACyIILHDaM7fVu3BuKgFaqlANwtmzvmLjatYPtVZu3Z6sEDpzmMJ9-zegn5A2DNYNOfGLrdqOEkvCMrBhsVNN3Cp6TFQBnjeqguyQvS7kHANbz9gW55JL1AoRYEbd7PP7CSIfg_VxCivRg6v7BHAsNkdqcHuIUxhFzqEi_523a8bW8XnZ-nDE6pMnTUvPs6pyRmjhQt8cpODPSQ6oYazDjK3LhzVjw9XlekZ9fv_zY3jR3u2-32893jWuhq01ruOttD1wZA0x5ITwKISyA8IvwiBLQcrRC2t4phGEYLDq-_NQxY524Iu9OuanUoItbTnZ7l2JEVzVjst1ItqAPJ3TI6feMpeopFIfjaCKmuWgmpQJQSj3R9__R-zTnuLygOeOd7PqNkIv6eFIup1Iyen3IYTL5qBnop3o00-d6Fvv2nDjbCYd_8m8f4g-zrom7</recordid><startdate>20140828</startdate><enddate>20140828</enddate><creator>Mitra, Chandrima</creator><creator>Meyer, Tricia</creator><creator>Lee, Ho Nyung</creator><creator>Reboredo, Fernando A</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000319003888</orcidid><orcidid>https://orcid.org/0000000221803975</orcidid></search><sort><creationdate>20140828</creationdate><title>Oxygen diffusion pathways in brownmillerite SrCoO2.5: influence of structure and chemical potential</title><author>Mitra, Chandrima ; Meyer, Tricia ; Lee, Ho Nyung ; Reboredo, Fernando A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-4a2c7b7029aa019f33fe333b003fc40fee50eb2eb35b7c9e0dddbec217261abc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Activation energy</topic><topic>Anisotropy</topic><topic>Brownmillerite</topic><topic>Calcium aluminum ferrite</topic><topic>Channels</topic><topic>Chemical potential</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Diffusion barriers</topic><topic>First principles</topic><topic>Ion diffusion</topic><topic>Lattice vacancies</topic><topic>Migration</topic><topic>Organic chemistry</topic><topic>Oxygen</topic><topic>Physics</topic><topic>Point defects</topic><topic>Solid oxide fuel cells</topic><topic>Transport</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitra, Chandrima</creatorcontrib><creatorcontrib>Meyer, Tricia</creatorcontrib><creatorcontrib>Lee, Ho Nyung</creatorcontrib><creatorcontrib>Reboredo, Fernando A</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitra, Chandrima</au><au>Meyer, Tricia</au><au>Lee, Ho Nyung</au><au>Reboredo, Fernando A</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen diffusion pathways in brownmillerite SrCoO2.5: influence of structure and chemical potential</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2014-08-28</date><risdate>2014</risdate><volume>141</volume><issue>8</issue><spage>084710</spage><epage>084710</epage><pages>084710-084710</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>To design and discover new materials for next-generation energy materials such as solid-oxide fuel cells (SOFCs), a fundamental understanding of their ionic properties and behaviors is essential. The potential applicability of a material for SOFCs is critically determined by the activation energy barrier of oxygen along various diffusion pathways. In this work, we investigate interstitial-oxygen (Oi) diffusion in brownmillerite oxide SrCoO2.5, employing a first-principles approach. Our calculations indicate highly anisotropic ionic diffusion pathways, which result from its anisotropic crystal structure. The one-dimensional-ordered oxygen vacancy channels are found to provide the easiest diffusion pathway with an activation energy barrier height of 0.62 eV. The directions perpendicular to the vacancy channels have higher energy barriers for Oint diffusion. In addition, we have studied migration barriers for oxygen vacancies that could be present as point defects within the material. This in turn could also facilitate the transport of oxygen. Interestingly, for oxygen vacancies, the lowest barrier height was found to occur within the octahedral layer with an energy of 0.82 eV. Our results imply that interstitial migration would be highly one-dimensional in nature. Oxygen vacancy transport, on the other hand, could preferentially occur in the two-dimensional octahedral plane.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>25173033</pmid><doi>10.1063/1.4893950</doi><tpages>1</tpages><orcidid>https://orcid.org/0000000319003888</orcidid><orcidid>https://orcid.org/0000000221803975</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2014-08, Vol.141 (8), p.084710-084710 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_osti_scitechconnect_1154851 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Activation energy Anisotropy Brownmillerite Calcium aluminum ferrite Channels Chemical potential Crystal defects Crystal structure Diffusion barriers First principles Ion diffusion Lattice vacancies Migration Organic chemistry Oxygen Physics Point defects Solid oxide fuel cells Transport Vacancies |
title | Oxygen diffusion pathways in brownmillerite SrCoO2.5: influence of structure and chemical potential |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20diffusion%20pathways%20in%20brownmillerite%20SrCoO2.5:%20influence%20of%20structure%20and%20chemical%20potential&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Mitra,%20Chandrima&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2014-08-28&rft.volume=141&rft.issue=8&rft.spage=084710&rft.epage=084710&rft.pages=084710-084710&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4893950&rft_dat=%3Cproquest_osti_%3E2126567835%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126567835&rft_id=info:pmid/25173033&rfr_iscdi=true |