Oxygen diffusion pathways in brownmillerite SrCoO2.5: influence of structure and chemical potential

To design and discover new materials for next-generation energy materials such as solid-oxide fuel cells (SOFCs), a fundamental understanding of their ionic properties and behaviors is essential. The potential applicability of a material for SOFCs is critically determined by the activation energy ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2014-08, Vol.141 (8), p.084710-084710
Hauptverfasser: Mitra, Chandrima, Meyer, Tricia, Lee, Ho Nyung, Reboredo, Fernando A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 084710
container_issue 8
container_start_page 084710
container_title The Journal of chemical physics
container_volume 141
creator Mitra, Chandrima
Meyer, Tricia
Lee, Ho Nyung
Reboredo, Fernando A
description To design and discover new materials for next-generation energy materials such as solid-oxide fuel cells (SOFCs), a fundamental understanding of their ionic properties and behaviors is essential. The potential applicability of a material for SOFCs is critically determined by the activation energy barrier of oxygen along various diffusion pathways. In this work, we investigate interstitial-oxygen (Oi) diffusion in brownmillerite oxide SrCoO2.5, employing a first-principles approach. Our calculations indicate highly anisotropic ionic diffusion pathways, which result from its anisotropic crystal structure. The one-dimensional-ordered oxygen vacancy channels are found to provide the easiest diffusion pathway with an activation energy barrier height of 0.62 eV. The directions perpendicular to the vacancy channels have higher energy barriers for Oint diffusion. In addition, we have studied migration barriers for oxygen vacancies that could be present as point defects within the material. This in turn could also facilitate the transport of oxygen. Interestingly, for oxygen vacancies, the lowest barrier height was found to occur within the octahedral layer with an energy of 0.82 eV. Our results imply that interstitial migration would be highly one-dimensional in nature. Oxygen vacancy transport, on the other hand, could preferentially occur in the two-dimensional octahedral plane.
doi_str_mv 10.1063/1.4893950
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1154851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2126567835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-4a2c7b7029aa019f33fe333b003fc40fee50eb2eb35b7c9e0dddbec217261abc3</originalsourceid><addsrcrecordid>eNpd0cFuEzEQBmALUdFQOPACyIILHDaM7fVu3BuKgFaqlANwtmzvmLjatYPtVZu3Z6sEDpzmMJ9-zegn5A2DNYNOfGLrdqOEkvCMrBhsVNN3Cp6TFQBnjeqguyQvS7kHANbz9gW55JL1AoRYEbd7PP7CSIfg_VxCivRg6v7BHAsNkdqcHuIUxhFzqEi_523a8bW8XnZ-nDE6pMnTUvPs6pyRmjhQt8cpODPSQ6oYazDjK3LhzVjw9XlekZ9fv_zY3jR3u2-32893jWuhq01ruOttD1wZA0x5ITwKISyA8IvwiBLQcrRC2t4phGEYLDq-_NQxY524Iu9OuanUoItbTnZ7l2JEVzVjst1ItqAPJ3TI6feMpeopFIfjaCKmuWgmpQJQSj3R9__R-zTnuLygOeOd7PqNkIv6eFIup1Iyen3IYTL5qBnop3o00-d6Fvv2nDjbCYd_8m8f4g-zrom7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126567835</pqid></control><display><type>article</type><title>Oxygen diffusion pathways in brownmillerite SrCoO2.5: influence of structure and chemical potential</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Mitra, Chandrima ; Meyer, Tricia ; Lee, Ho Nyung ; Reboredo, Fernando A</creator><creatorcontrib>Mitra, Chandrima ; Meyer, Tricia ; Lee, Ho Nyung ; Reboredo, Fernando A ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>To design and discover new materials for next-generation energy materials such as solid-oxide fuel cells (SOFCs), a fundamental understanding of their ionic properties and behaviors is essential. The potential applicability of a material for SOFCs is critically determined by the activation energy barrier of oxygen along various diffusion pathways. In this work, we investigate interstitial-oxygen (Oi) diffusion in brownmillerite oxide SrCoO2.5, employing a first-principles approach. Our calculations indicate highly anisotropic ionic diffusion pathways, which result from its anisotropic crystal structure. The one-dimensional-ordered oxygen vacancy channels are found to provide the easiest diffusion pathway with an activation energy barrier height of 0.62 eV. The directions perpendicular to the vacancy channels have higher energy barriers for Oint diffusion. In addition, we have studied migration barriers for oxygen vacancies that could be present as point defects within the material. This in turn could also facilitate the transport of oxygen. Interestingly, for oxygen vacancies, the lowest barrier height was found to occur within the octahedral layer with an energy of 0.82 eV. Our results imply that interstitial migration would be highly one-dimensional in nature. Oxygen vacancy transport, on the other hand, could preferentially occur in the two-dimensional octahedral plane.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4893950</identifier><identifier>PMID: 25173033</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Activation energy ; Anisotropy ; Brownmillerite ; Calcium aluminum ferrite ; Channels ; Chemical potential ; Crystal defects ; Crystal structure ; Diffusion barriers ; First principles ; Ion diffusion ; Lattice vacancies ; Migration ; Organic chemistry ; Oxygen ; Physics ; Point defects ; Solid oxide fuel cells ; Transport ; Vacancies</subject><ispartof>The Journal of chemical physics, 2014-08, Vol.141 (8), p.084710-084710</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-4a2c7b7029aa019f33fe333b003fc40fee50eb2eb35b7c9e0dddbec217261abc3</citedby><cites>FETCH-LOGICAL-c406t-4a2c7b7029aa019f33fe333b003fc40fee50eb2eb35b7c9e0dddbec217261abc3</cites><orcidid>0000000319003888 ; 0000000221803975</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25173033$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1154851$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mitra, Chandrima</creatorcontrib><creatorcontrib>Meyer, Tricia</creatorcontrib><creatorcontrib>Lee, Ho Nyung</creatorcontrib><creatorcontrib>Reboredo, Fernando A</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Oxygen diffusion pathways in brownmillerite SrCoO2.5: influence of structure and chemical potential</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>To design and discover new materials for next-generation energy materials such as solid-oxide fuel cells (SOFCs), a fundamental understanding of their ionic properties and behaviors is essential. The potential applicability of a material for SOFCs is critically determined by the activation energy barrier of oxygen along various diffusion pathways. In this work, we investigate interstitial-oxygen (Oi) diffusion in brownmillerite oxide SrCoO2.5, employing a first-principles approach. Our calculations indicate highly anisotropic ionic diffusion pathways, which result from its anisotropic crystal structure. The one-dimensional-ordered oxygen vacancy channels are found to provide the easiest diffusion pathway with an activation energy barrier height of 0.62 eV. The directions perpendicular to the vacancy channels have higher energy barriers for Oint diffusion. In addition, we have studied migration barriers for oxygen vacancies that could be present as point defects within the material. This in turn could also facilitate the transport of oxygen. Interestingly, for oxygen vacancies, the lowest barrier height was found to occur within the octahedral layer with an energy of 0.82 eV. Our results imply that interstitial migration would be highly one-dimensional in nature. Oxygen vacancy transport, on the other hand, could preferentially occur in the two-dimensional octahedral plane.</description><subject>Activation energy</subject><subject>Anisotropy</subject><subject>Brownmillerite</subject><subject>Calcium aluminum ferrite</subject><subject>Channels</subject><subject>Chemical potential</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Diffusion barriers</subject><subject>First principles</subject><subject>Ion diffusion</subject><subject>Lattice vacancies</subject><subject>Migration</subject><subject>Organic chemistry</subject><subject>Oxygen</subject><subject>Physics</subject><subject>Point defects</subject><subject>Solid oxide fuel cells</subject><subject>Transport</subject><subject>Vacancies</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpd0cFuEzEQBmALUdFQOPACyIILHDaM7fVu3BuKgFaqlANwtmzvmLjatYPtVZu3Z6sEDpzmMJ9-zegn5A2DNYNOfGLrdqOEkvCMrBhsVNN3Cp6TFQBnjeqguyQvS7kHANbz9gW55JL1AoRYEbd7PP7CSIfg_VxCivRg6v7BHAsNkdqcHuIUxhFzqEi_523a8bW8XnZ-nDE6pMnTUvPs6pyRmjhQt8cpODPSQ6oYazDjK3LhzVjw9XlekZ9fv_zY3jR3u2-32893jWuhq01ruOttD1wZA0x5ITwKISyA8IvwiBLQcrRC2t4phGEYLDq-_NQxY524Iu9OuanUoItbTnZ7l2JEVzVjst1ItqAPJ3TI6feMpeopFIfjaCKmuWgmpQJQSj3R9__R-zTnuLygOeOd7PqNkIv6eFIup1Iyen3IYTL5qBnop3o00-d6Fvv2nDjbCYd_8m8f4g-zrom7</recordid><startdate>20140828</startdate><enddate>20140828</enddate><creator>Mitra, Chandrima</creator><creator>Meyer, Tricia</creator><creator>Lee, Ho Nyung</creator><creator>Reboredo, Fernando A</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000319003888</orcidid><orcidid>https://orcid.org/0000000221803975</orcidid></search><sort><creationdate>20140828</creationdate><title>Oxygen diffusion pathways in brownmillerite SrCoO2.5: influence of structure and chemical potential</title><author>Mitra, Chandrima ; Meyer, Tricia ; Lee, Ho Nyung ; Reboredo, Fernando A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-4a2c7b7029aa019f33fe333b003fc40fee50eb2eb35b7c9e0dddbec217261abc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Activation energy</topic><topic>Anisotropy</topic><topic>Brownmillerite</topic><topic>Calcium aluminum ferrite</topic><topic>Channels</topic><topic>Chemical potential</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Diffusion barriers</topic><topic>First principles</topic><topic>Ion diffusion</topic><topic>Lattice vacancies</topic><topic>Migration</topic><topic>Organic chemistry</topic><topic>Oxygen</topic><topic>Physics</topic><topic>Point defects</topic><topic>Solid oxide fuel cells</topic><topic>Transport</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mitra, Chandrima</creatorcontrib><creatorcontrib>Meyer, Tricia</creatorcontrib><creatorcontrib>Lee, Ho Nyung</creatorcontrib><creatorcontrib>Reboredo, Fernando A</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mitra, Chandrima</au><au>Meyer, Tricia</au><au>Lee, Ho Nyung</au><au>Reboredo, Fernando A</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen diffusion pathways in brownmillerite SrCoO2.5: influence of structure and chemical potential</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2014-08-28</date><risdate>2014</risdate><volume>141</volume><issue>8</issue><spage>084710</spage><epage>084710</epage><pages>084710-084710</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>To design and discover new materials for next-generation energy materials such as solid-oxide fuel cells (SOFCs), a fundamental understanding of their ionic properties and behaviors is essential. The potential applicability of a material for SOFCs is critically determined by the activation energy barrier of oxygen along various diffusion pathways. In this work, we investigate interstitial-oxygen (Oi) diffusion in brownmillerite oxide SrCoO2.5, employing a first-principles approach. Our calculations indicate highly anisotropic ionic diffusion pathways, which result from its anisotropic crystal structure. The one-dimensional-ordered oxygen vacancy channels are found to provide the easiest diffusion pathway with an activation energy barrier height of 0.62 eV. The directions perpendicular to the vacancy channels have higher energy barriers for Oint diffusion. In addition, we have studied migration barriers for oxygen vacancies that could be present as point defects within the material. This in turn could also facilitate the transport of oxygen. Interestingly, for oxygen vacancies, the lowest barrier height was found to occur within the octahedral layer with an energy of 0.82 eV. Our results imply that interstitial migration would be highly one-dimensional in nature. Oxygen vacancy transport, on the other hand, could preferentially occur in the two-dimensional octahedral plane.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>25173033</pmid><doi>10.1063/1.4893950</doi><tpages>1</tpages><orcidid>https://orcid.org/0000000319003888</orcidid><orcidid>https://orcid.org/0000000221803975</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2014-08, Vol.141 (8), p.084710-084710
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_1154851
source AIP Journals Complete; Alma/SFX Local Collection
subjects Activation energy
Anisotropy
Brownmillerite
Calcium aluminum ferrite
Channels
Chemical potential
Crystal defects
Crystal structure
Diffusion barriers
First principles
Ion diffusion
Lattice vacancies
Migration
Organic chemistry
Oxygen
Physics
Point defects
Solid oxide fuel cells
Transport
Vacancies
title Oxygen diffusion pathways in brownmillerite SrCoO2.5: influence of structure and chemical potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20diffusion%20pathways%20in%20brownmillerite%20SrCoO2.5:%20influence%20of%20structure%20and%20chemical%20potential&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Mitra,%20Chandrima&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2014-08-28&rft.volume=141&rft.issue=8&rft.spage=084710&rft.epage=084710&rft.pages=084710-084710&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4893950&rft_dat=%3Cproquest_osti_%3E2126567835%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126567835&rft_id=info:pmid/25173033&rfr_iscdi=true