Estimation of field-scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data

A method is described for the joint use of time-lapse ground-penetrating radar (GPR) travel times and hydrological data to estimate field-scale soil hydraulic parameters. We build upon previous work to take advantage of a wide range of cross-borehole GPR data acquisition configurations and to accomm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2005-11, Vol.41 (11), p.n/a
Hauptverfasser: Kowalsky, M.B, Finsterle. S, Peterson, J, Hubbard, S, Rubin, Y, Majer, E, Ward, A, Gee, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title Water resources research
container_volume 41
creator Kowalsky, M.B
Finsterle. S
Peterson, J
Hubbard, S
Rubin, Y
Majer, E
Ward, A
Gee, G
description A method is described for the joint use of time-lapse ground-penetrating radar (GPR) travel times and hydrological data to estimate field-scale soil hydraulic parameters. We build upon previous work to take advantage of a wide range of cross-borehole GPR data acquisition configurations and to accommodate uncertainty in the petrophysical function, which relates soil porosity and water saturation to the effective dielectric constant. We first test the inversion methodology using synthetic examples of water injection in the vadose zone. Realistic errors in the petrophysical function result in substantial errors in soil hydraulic parameter estimates, but such errors are minimized through simultaneous estimation of petrophysical parameters. In some cases the use of a simplified GPR simulator causes systematic errors in calculated travel times; simultaneous estimation of a single correction parameter sufficiently reduces the impact of these errors. We also apply the method to the U.S. Department of Energy (DOE) Hanford site in Washington, where time-lapse GPR and neutron probe (NP) data sets were collected during an infiltration experiment. We find that inclusion of GPR data in the inversion procedure allows for improved predictions of water content, compared to predictions made using NP data alone. These examples demonstrate that the complimentary information contained in geophysical and hydrological data can be successfully extracted in a joint inversion approach. Moreover, since the generation of tomograms is not required, the amount of GPR data required for analyses is relatively low, and difficulties inherent to tomography methods are alleviated. Finally, the approach provides a means to capture the properties and system state of heterogeneous soil, both of which are crucial for assessing and predicting subsurface flow and contaminant transport.
doi_str_mv 10.1029/2005WR004237
format Article
fullrecord <record><control><sourceid>wiley_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1154405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>WRCR10456</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4956-c11107ca80b9bc1b655f4884346cbdb92e817a56867e63289a2523e891bb752e3</originalsourceid><addsrcrecordid>eNp9kM1P3DAQxa2qlboFbr1j9dwUjz_i-IhWdNsKAQrQPVqO4-waQoxsU7r_PaZBiFNPo5n5vSe9h9BnIN-AUHVECRHrlhBOmXyHFqA4r6SS7D1alCOrgCn5EX1K6YYQ4KKWC_R4krK_M9mHCYcBD96NfZWsGR1OwY94u-ujeRi9xWbqcV_ezuZY1nsTzZ3LLiactzE8bLb4JvgpYz_9KccXv9VF-0_4bBPGsPHFGfcmm330YTBjcgcvcw9dfz-5Wv6oTs9XP5fHp5XhStSVBQAirWlIpzoLXS3EwJuGM17bru8UdQ1II-qmlq5mtFGGCspco6DrpKCO7aEvs28oOXWyPju7tWGaSgwNIDgnokBfZ8jGkFJ0g76PpZS400D0c7P6bbMFZzP-6Ee3-y-r1-2yBVK6LqpqVvmU3d9XlYm3upZMCr0-W-l2dUXZxfq3_lX4w5kfTNBmE33S15eUACNABHBF2ROfOpNJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Estimation of field-scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kowalsky, M.B ; Finsterle. S ; Peterson, J ; Hubbard, S ; Rubin, Y ; Majer, E ; Ward, A ; Gee, G</creator><creatorcontrib>Kowalsky, M.B ; Finsterle. S ; Peterson, J ; Hubbard, S ; Rubin, Y ; Majer, E ; Ward, A ; Gee, G ; Subsurface Biogeochemical Research (SBR)</creatorcontrib><description>A method is described for the joint use of time-lapse ground-penetrating radar (GPR) travel times and hydrological data to estimate field-scale soil hydraulic parameters. We build upon previous work to take advantage of a wide range of cross-borehole GPR data acquisition configurations and to accommodate uncertainty in the petrophysical function, which relates soil porosity and water saturation to the effective dielectric constant. We first test the inversion methodology using synthetic examples of water injection in the vadose zone. Realistic errors in the petrophysical function result in substantial errors in soil hydraulic parameter estimates, but such errors are minimized through simultaneous estimation of petrophysical parameters. In some cases the use of a simplified GPR simulator causes systematic errors in calculated travel times; simultaneous estimation of a single correction parameter sufficiently reduces the impact of these errors. We also apply the method to the U.S. Department of Energy (DOE) Hanford site in Washington, where time-lapse GPR and neutron probe (NP) data sets were collected during an infiltration experiment. We find that inclusion of GPR data in the inversion procedure allows for improved predictions of water content, compared to predictions made using NP data alone. These examples demonstrate that the complimentary information contained in geophysical and hydrological data can be successfully extracted in a joint inversion approach. Moreover, since the generation of tomograms is not required, the amount of GPR data required for analyses is relatively low, and difficulties inherent to tomography methods are alleviated. Finally, the approach provides a means to capture the properties and system state of heterogeneous soil, both of which are crucial for assessing and predicting subsurface flow and contaminant transport.</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2005WR004237</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>accuracy ; dielectric constant ; dielectric properties ; geophysics ; GPR ; ground-penetrating radar ; hydrogeophysics ; hydrologic data ; infiltration (hydrology) ; joint inversion ; parameter estimation ; pilot points ; soil hydraulic properties ; soil physical properties ; soil pore system ; soil transport processes ; subsurface flow ; vadose zone</subject><ispartof>Water resources research, 2005-11, Vol.41 (11), p.n/a</ispartof><rights>Copyright 2005 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4956-c11107ca80b9bc1b655f4884346cbdb92e817a56867e63289a2523e891bb752e3</citedby><cites>FETCH-LOGICAL-a4956-c11107ca80b9bc1b655f4884346cbdb92e817a56867e63289a2523e891bb752e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2005WR004237$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2005WR004237$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,11513,27923,27924,45573,45574,46467,46891</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1154405$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kowalsky, M.B</creatorcontrib><creatorcontrib>Finsterle. S</creatorcontrib><creatorcontrib>Peterson, J</creatorcontrib><creatorcontrib>Hubbard, S</creatorcontrib><creatorcontrib>Rubin, Y</creatorcontrib><creatorcontrib>Majer, E</creatorcontrib><creatorcontrib>Ward, A</creatorcontrib><creatorcontrib>Gee, G</creatorcontrib><creatorcontrib>Subsurface Biogeochemical Research (SBR)</creatorcontrib><title>Estimation of field-scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data</title><title>Water resources research</title><addtitle>Water Resour. Res</addtitle><description>A method is described for the joint use of time-lapse ground-penetrating radar (GPR) travel times and hydrological data to estimate field-scale soil hydraulic parameters. We build upon previous work to take advantage of a wide range of cross-borehole GPR data acquisition configurations and to accommodate uncertainty in the petrophysical function, which relates soil porosity and water saturation to the effective dielectric constant. We first test the inversion methodology using synthetic examples of water injection in the vadose zone. Realistic errors in the petrophysical function result in substantial errors in soil hydraulic parameter estimates, but such errors are minimized through simultaneous estimation of petrophysical parameters. In some cases the use of a simplified GPR simulator causes systematic errors in calculated travel times; simultaneous estimation of a single correction parameter sufficiently reduces the impact of these errors. We also apply the method to the U.S. Department of Energy (DOE) Hanford site in Washington, where time-lapse GPR and neutron probe (NP) data sets were collected during an infiltration experiment. We find that inclusion of GPR data in the inversion procedure allows for improved predictions of water content, compared to predictions made using NP data alone. These examples demonstrate that the complimentary information contained in geophysical and hydrological data can be successfully extracted in a joint inversion approach. Moreover, since the generation of tomograms is not required, the amount of GPR data required for analyses is relatively low, and difficulties inherent to tomography methods are alleviated. Finally, the approach provides a means to capture the properties and system state of heterogeneous soil, both of which are crucial for assessing and predicting subsurface flow and contaminant transport.</description><subject>accuracy</subject><subject>dielectric constant</subject><subject>dielectric properties</subject><subject>geophysics</subject><subject>GPR</subject><subject>ground-penetrating radar</subject><subject>hydrogeophysics</subject><subject>hydrologic data</subject><subject>infiltration (hydrology)</subject><subject>joint inversion</subject><subject>parameter estimation</subject><subject>pilot points</subject><subject>soil hydraulic properties</subject><subject>soil physical properties</subject><subject>soil pore system</subject><subject>soil transport processes</subject><subject>subsurface flow</subject><subject>vadose zone</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kM1P3DAQxa2qlboFbr1j9dwUjz_i-IhWdNsKAQrQPVqO4-waQoxsU7r_PaZBiFNPo5n5vSe9h9BnIN-AUHVECRHrlhBOmXyHFqA4r6SS7D1alCOrgCn5EX1K6YYQ4KKWC_R4krK_M9mHCYcBD96NfZWsGR1OwY94u-ujeRi9xWbqcV_ezuZY1nsTzZ3LLiactzE8bLb4JvgpYz_9KccXv9VF-0_4bBPGsPHFGfcmm330YTBjcgcvcw9dfz-5Wv6oTs9XP5fHp5XhStSVBQAirWlIpzoLXS3EwJuGM17bru8UdQ1II-qmlq5mtFGGCspco6DrpKCO7aEvs28oOXWyPju7tWGaSgwNIDgnokBfZ8jGkFJ0g76PpZS400D0c7P6bbMFZzP-6Ee3-y-r1-2yBVK6LqpqVvmU3d9XlYm3upZMCr0-W-l2dUXZxfq3_lX4w5kfTNBmE33S15eUACNABHBF2ROfOpNJ</recordid><startdate>200511</startdate><enddate>200511</enddate><creator>Kowalsky, M.B</creator><creator>Finsterle. S</creator><creator>Peterson, J</creator><creator>Hubbard, S</creator><creator>Rubin, Y</creator><creator>Majer, E</creator><creator>Ward, A</creator><creator>Gee, G</creator><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>200511</creationdate><title>Estimation of field-scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data</title><author>Kowalsky, M.B ; Finsterle. S ; Peterson, J ; Hubbard, S ; Rubin, Y ; Majer, E ; Ward, A ; Gee, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4956-c11107ca80b9bc1b655f4884346cbdb92e817a56867e63289a2523e891bb752e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>accuracy</topic><topic>dielectric constant</topic><topic>dielectric properties</topic><topic>geophysics</topic><topic>GPR</topic><topic>ground-penetrating radar</topic><topic>hydrogeophysics</topic><topic>hydrologic data</topic><topic>infiltration (hydrology)</topic><topic>joint inversion</topic><topic>parameter estimation</topic><topic>pilot points</topic><topic>soil hydraulic properties</topic><topic>soil physical properties</topic><topic>soil pore system</topic><topic>soil transport processes</topic><topic>subsurface flow</topic><topic>vadose zone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kowalsky, M.B</creatorcontrib><creatorcontrib>Finsterle. S</creatorcontrib><creatorcontrib>Peterson, J</creatorcontrib><creatorcontrib>Hubbard, S</creatorcontrib><creatorcontrib>Rubin, Y</creatorcontrib><creatorcontrib>Majer, E</creatorcontrib><creatorcontrib>Ward, A</creatorcontrib><creatorcontrib>Gee, G</creatorcontrib><creatorcontrib>Subsurface Biogeochemical Research (SBR)</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kowalsky, M.B</au><au>Finsterle. S</au><au>Peterson, J</au><au>Hubbard, S</au><au>Rubin, Y</au><au>Majer, E</au><au>Ward, A</au><au>Gee, G</au><aucorp>Subsurface Biogeochemical Research (SBR)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of field-scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data</atitle><jtitle>Water resources research</jtitle><addtitle>Water Resour. Res</addtitle><date>2005-11</date><risdate>2005</risdate><volume>41</volume><issue>11</issue><epage>n/a</epage><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>A method is described for the joint use of time-lapse ground-penetrating radar (GPR) travel times and hydrological data to estimate field-scale soil hydraulic parameters. We build upon previous work to take advantage of a wide range of cross-borehole GPR data acquisition configurations and to accommodate uncertainty in the petrophysical function, which relates soil porosity and water saturation to the effective dielectric constant. We first test the inversion methodology using synthetic examples of water injection in the vadose zone. Realistic errors in the petrophysical function result in substantial errors in soil hydraulic parameter estimates, but such errors are minimized through simultaneous estimation of petrophysical parameters. In some cases the use of a simplified GPR simulator causes systematic errors in calculated travel times; simultaneous estimation of a single correction parameter sufficiently reduces the impact of these errors. We also apply the method to the U.S. Department of Energy (DOE) Hanford site in Washington, where time-lapse GPR and neutron probe (NP) data sets were collected during an infiltration experiment. We find that inclusion of GPR data in the inversion procedure allows for improved predictions of water content, compared to predictions made using NP data alone. These examples demonstrate that the complimentary information contained in geophysical and hydrological data can be successfully extracted in a joint inversion approach. Moreover, since the generation of tomograms is not required, the amount of GPR data required for analyses is relatively low, and difficulties inherent to tomography methods are alleviated. Finally, the approach provides a means to capture the properties and system state of heterogeneous soil, both of which are crucial for assessing and predicting subsurface flow and contaminant transport.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2005WR004237</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2005-11, Vol.41 (11), p.n/a
issn 0043-1397
1944-7973
language eng
recordid cdi_osti_scitechconnect_1154405
source Wiley Online Library Journals Frontfile Complete; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals
subjects accuracy
dielectric constant
dielectric properties
geophysics
GPR
ground-penetrating radar
hydrogeophysics
hydrologic data
infiltration (hydrology)
joint inversion
parameter estimation
pilot points
soil hydraulic properties
soil physical properties
soil pore system
soil transport processes
subsurface flow
vadose zone
title Estimation of field-scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T07%3A17%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20field-scale%20soil%20hydraulic%20and%20dielectric%20parameters%20through%20joint%20inversion%20of%20GPR%20and%20hydrological%20data&rft.jtitle=Water%20resources%20research&rft.au=Kowalsky,%20M.B&rft.aucorp=Subsurface%20Biogeochemical%20Research%20(SBR)&rft.date=2005-11&rft.volume=41&rft.issue=11&rft.epage=n/a&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2005WR004237&rft_dat=%3Cwiley_osti_%3EWRCR10456%3C/wiley_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true