Forward and Inverse Bio-Geochemical Modeling of Microbially Induced Calcite Precipitation in Half-Meter Column Experiments
Microbially induced calcite precipitation (MICP) offers an alternative solution to a wide range of civil engineering problems. Laboratory tests have shown that MICP can immobilize trace metals and radionuclides through co-precipitation with calcium carbonate. MICP has also been shown to improve the...
Gespeichert in:
Veröffentlicht in: | Transport in porous media 2011-10, Vol.90 (1), p.23-39 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39 |
---|---|
container_issue | 1 |
container_start_page | 23 |
container_title | Transport in porous media |
container_volume | 90 |
creator | Barkouki, T. H. Martinez, B. C. Mortensen, B. M. Weathers, T. S. De Jong, J. D. Ginn, T. R. Spycher, N. F. Smith, R. W. Fujita, Y. |
description | Microbially induced calcite precipitation (MICP) offers an alternative solution to a wide range of civil engineering problems. Laboratory tests have shown that MICP can immobilize trace metals and radionuclides through co-precipitation with calcium carbonate. MICP has also been shown to improve the undrained shear response of soils and offers potential benefits over current ground improvement techniques that may pose environmental risks and suffer from low “certainty of execution.” Our objective is to identify an effective means of achieving uniform distribution of precipitate in a one-dimensional porous medium. Our approach involves column experiments and numerical modeling of MICP in both forward and inverse senses, using a simplified reaction network, with the bacterial strain
Sporoscarcina pasteurii
. It was found that the stop-flow injection of a urea- and calcium-rich solution produces a more uniform calcite distribution as compared to a continuous injection method, even when both methods involve flow in opposite direction to that used for bacterial cell emplacement. Inverse modeling was conducted by coupling the reactive transport code TOUGHREACT to UCODE for estimating chemical reaction rate parameters with a good match to the experimental data. It was found, however, that the choice of parameters and data was not sufficient to determine a unique solution, and our findings suggest that additional time and space-varying analytical data of aqueous species would improve the accuracy of numerical modeling of MICP. |
doi_str_mv | 10.1007/s11242-011-9804-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1154168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2258177888</sourcerecordid><originalsourceid>FETCH-LOGICAL-a462t-e3e4e08617098d63b9a861350cb085898b426dbfb55b6efdd7d8956abeddced23</originalsourceid><addsrcrecordid>eNp1kUuPFCEUhYnRxHb0B7gjGpcor6KopXbmlUzHWYxrQsGtGSbV0AI9j_710qmJrlzdkPudk8M9CH1k9CujtP9WGOOSE8oYGTSV5PAKrVjXC8KUkK_RijI1EDEw8Ra9K-We0qbScoUOZyk_2uyxjR5fxgfIBfCPkMg5JHcH2-DsjDfJwxziLU4T3gSX0xjsPD833u8deLy2swsV8HUGF3ah2hpSxCHiCztPZAMVMl6neb-N-PRpBzlsIdbyHr2Z7Fzgw8s8Qb_OTm_WF-Tq5_nl-vsVsVLxSkCABKoV6-mgvRLjYNtDdNSNVHd60KPkyo_T2HWjgsn73uuhU3YE71s4Lk7Qp8U3lRpMOSZ1dy7FCK4axjrJlG7Q5wXa5fR7D6Wa-7TPseUynHea9b3WR4otVLtBKRkms2ufsfnZMGqOPZilB9N6MMcezKFpvrw429KOOWUbXSh_hVyqQSgqG8cXrrRVvIX8L8H_zf8ABB2ZMQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258177888</pqid></control><display><type>article</type><title>Forward and Inverse Bio-Geochemical Modeling of Microbially Induced Calcite Precipitation in Half-Meter Column Experiments</title><source>SpringerLink Journals</source><creator>Barkouki, T. H. ; Martinez, B. C. ; Mortensen, B. M. ; Weathers, T. S. ; De Jong, J. D. ; Ginn, T. R. ; Spycher, N. F. ; Smith, R. W. ; Fujita, Y.</creator><creatorcontrib>Barkouki, T. H. ; Martinez, B. C. ; Mortensen, B. M. ; Weathers, T. S. ; De Jong, J. D. ; Ginn, T. R. ; Spycher, N. F. ; Smith, R. W. ; Fujita, Y. ; Subsurface Biogeochemical Research (SBR)</creatorcontrib><description>Microbially induced calcite precipitation (MICP) offers an alternative solution to a wide range of civil engineering problems. Laboratory tests have shown that MICP can immobilize trace metals and radionuclides through co-precipitation with calcium carbonate. MICP has also been shown to improve the undrained shear response of soils and offers potential benefits over current ground improvement techniques that may pose environmental risks and suffer from low “certainty of execution.” Our objective is to identify an effective means of achieving uniform distribution of precipitate in a one-dimensional porous medium. Our approach involves column experiments and numerical modeling of MICP in both forward and inverse senses, using a simplified reaction network, with the bacterial strain
Sporoscarcina pasteurii
. It was found that the stop-flow injection of a urea- and calcium-rich solution produces a more uniform calcite distribution as compared to a continuous injection method, even when both methods involve flow in opposite direction to that used for bacterial cell emplacement. Inverse modeling was conducted by coupling the reactive transport code TOUGHREACT to UCODE for estimating chemical reaction rate parameters with a good match to the experimental data. It was found, however, that the choice of parameters and data was not sufficient to determine a unique solution, and our findings suggest that additional time and space-varying analytical data of aqueous species would improve the accuracy of numerical modeling of MICP.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-011-9804-z</identifier><identifier>CODEN: TPMEEI</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Calcite ; Calcium carbonate ; Chemical precipitation ; Chemical reactions ; Civil Engineering ; Classical and Continuum Physics ; Coprecipitation ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Geotechnical Engineering & Applied Earth Sciences ; Hydrocarbons ; Hydrogeology ; Hydrology. Hydrogeology ; Hydrology/Water Resources ; Industrial Chemistry/Chemical Engineering ; Laboratory tests ; Mathematical models ; Model accuracy ; Organic chemistry ; Parameter estimation ; Pollution, environment geology ; Porous media ; Radioisotopes ; Sedimentary rocks ; Trace metals</subject><ispartof>Transport in porous media, 2011-10, Vol.90 (1), p.23-39</ispartof><rights>Springer Science+Business Media B.V. 2011</rights><rights>2015 INIST-CNRS</rights><rights>Transport in Porous Media is a copyright of Springer, (2011). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a462t-e3e4e08617098d63b9a861350cb085898b426dbfb55b6efdd7d8956abeddced23</citedby><cites>FETCH-LOGICAL-a462t-e3e4e08617098d63b9a861350cb085898b426dbfb55b6efdd7d8956abeddced23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11242-011-9804-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11242-011-9804-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,881,23909,23910,25118,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24693604$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1154168$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Barkouki, T. H.</creatorcontrib><creatorcontrib>Martinez, B. C.</creatorcontrib><creatorcontrib>Mortensen, B. M.</creatorcontrib><creatorcontrib>Weathers, T. S.</creatorcontrib><creatorcontrib>De Jong, J. D.</creatorcontrib><creatorcontrib>Ginn, T. R.</creatorcontrib><creatorcontrib>Spycher, N. F.</creatorcontrib><creatorcontrib>Smith, R. W.</creatorcontrib><creatorcontrib>Fujita, Y.</creatorcontrib><creatorcontrib>Subsurface Biogeochemical Research (SBR)</creatorcontrib><title>Forward and Inverse Bio-Geochemical Modeling of Microbially Induced Calcite Precipitation in Half-Meter Column Experiments</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>Microbially induced calcite precipitation (MICP) offers an alternative solution to a wide range of civil engineering problems. Laboratory tests have shown that MICP can immobilize trace metals and radionuclides through co-precipitation with calcium carbonate. MICP has also been shown to improve the undrained shear response of soils and offers potential benefits over current ground improvement techniques that may pose environmental risks and suffer from low “certainty of execution.” Our objective is to identify an effective means of achieving uniform distribution of precipitate in a one-dimensional porous medium. Our approach involves column experiments and numerical modeling of MICP in both forward and inverse senses, using a simplified reaction network, with the bacterial strain
Sporoscarcina pasteurii
. It was found that the stop-flow injection of a urea- and calcium-rich solution produces a more uniform calcite distribution as compared to a continuous injection method, even when both methods involve flow in opposite direction to that used for bacterial cell emplacement. Inverse modeling was conducted by coupling the reactive transport code TOUGHREACT to UCODE for estimating chemical reaction rate parameters with a good match to the experimental data. It was found, however, that the choice of parameters and data was not sufficient to determine a unique solution, and our findings suggest that additional time and space-varying analytical data of aqueous species would improve the accuracy of numerical modeling of MICP.</description><subject>Calcite</subject><subject>Calcium carbonate</subject><subject>Chemical precipitation</subject><subject>Chemical reactions</subject><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Coprecipitation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrocarbons</subject><subject>Hydrogeology</subject><subject>Hydrology. Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Laboratory tests</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Organic chemistry</subject><subject>Parameter estimation</subject><subject>Pollution, environment geology</subject><subject>Porous media</subject><subject>Radioisotopes</subject><subject>Sedimentary rocks</subject><subject>Trace metals</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kUuPFCEUhYnRxHb0B7gjGpcor6KopXbmlUzHWYxrQsGtGSbV0AI9j_710qmJrlzdkPudk8M9CH1k9CujtP9WGOOSE8oYGTSV5PAKrVjXC8KUkK_RijI1EDEw8Ra9K-We0qbScoUOZyk_2uyxjR5fxgfIBfCPkMg5JHcH2-DsjDfJwxziLU4T3gSX0xjsPD833u8deLy2swsV8HUGF3ah2hpSxCHiCztPZAMVMl6neb-N-PRpBzlsIdbyHr2Z7Fzgw8s8Qb_OTm_WF-Tq5_nl-vsVsVLxSkCABKoV6-mgvRLjYNtDdNSNVHd60KPkyo_T2HWjgsn73uuhU3YE71s4Lk7Qp8U3lRpMOSZ1dy7FCK4axjrJlG7Q5wXa5fR7D6Wa-7TPseUynHea9b3WR4otVLtBKRkms2ufsfnZMGqOPZilB9N6MMcezKFpvrw429KOOWUbXSh_hVyqQSgqG8cXrrRVvIX8L8H_zf8ABB2ZMQ</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Barkouki, T. H.</creator><creator>Martinez, B. C.</creator><creator>Mortensen, B. M.</creator><creator>Weathers, T. S.</creator><creator>De Jong, J. D.</creator><creator>Ginn, T. R.</creator><creator>Spycher, N. F.</creator><creator>Smith, R. W.</creator><creator>Fujita, Y.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>OTOTI</scope></search><sort><creationdate>20111001</creationdate><title>Forward and Inverse Bio-Geochemical Modeling of Microbially Induced Calcite Precipitation in Half-Meter Column Experiments</title><author>Barkouki, T. H. ; Martinez, B. C. ; Mortensen, B. M. ; Weathers, T. S. ; De Jong, J. D. ; Ginn, T. R. ; Spycher, N. F. ; Smith, R. W. ; Fujita, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a462t-e3e4e08617098d63b9a861350cb085898b426dbfb55b6efdd7d8956abeddced23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Calcite</topic><topic>Calcium carbonate</topic><topic>Chemical precipitation</topic><topic>Chemical reactions</topic><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Coprecipitation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrocarbons</topic><topic>Hydrogeology</topic><topic>Hydrology. Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Laboratory tests</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Organic chemistry</topic><topic>Parameter estimation</topic><topic>Pollution, environment geology</topic><topic>Porous media</topic><topic>Radioisotopes</topic><topic>Sedimentary rocks</topic><topic>Trace metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barkouki, T. H.</creatorcontrib><creatorcontrib>Martinez, B. C.</creatorcontrib><creatorcontrib>Mortensen, B. M.</creatorcontrib><creatorcontrib>Weathers, T. S.</creatorcontrib><creatorcontrib>De Jong, J. D.</creatorcontrib><creatorcontrib>Ginn, T. R.</creatorcontrib><creatorcontrib>Spycher, N. F.</creatorcontrib><creatorcontrib>Smith, R. W.</creatorcontrib><creatorcontrib>Fujita, Y.</creatorcontrib><creatorcontrib>Subsurface Biogeochemical Research (SBR)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>OSTI.GOV</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barkouki, T. H.</au><au>Martinez, B. C.</au><au>Mortensen, B. M.</au><au>Weathers, T. S.</au><au>De Jong, J. D.</au><au>Ginn, T. R.</au><au>Spycher, N. F.</au><au>Smith, R. W.</au><au>Fujita, Y.</au><aucorp>Subsurface Biogeochemical Research (SBR)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forward and Inverse Bio-Geochemical Modeling of Microbially Induced Calcite Precipitation in Half-Meter Column Experiments</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2011-10-01</date><risdate>2011</risdate><volume>90</volume><issue>1</issue><spage>23</spage><epage>39</epage><pages>23-39</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><coden>TPMEEI</coden><abstract>Microbially induced calcite precipitation (MICP) offers an alternative solution to a wide range of civil engineering problems. Laboratory tests have shown that MICP can immobilize trace metals and radionuclides through co-precipitation with calcium carbonate. MICP has also been shown to improve the undrained shear response of soils and offers potential benefits over current ground improvement techniques that may pose environmental risks and suffer from low “certainty of execution.” Our objective is to identify an effective means of achieving uniform distribution of precipitate in a one-dimensional porous medium. Our approach involves column experiments and numerical modeling of MICP in both forward and inverse senses, using a simplified reaction network, with the bacterial strain
Sporoscarcina pasteurii
. It was found that the stop-flow injection of a urea- and calcium-rich solution produces a more uniform calcite distribution as compared to a continuous injection method, even when both methods involve flow in opposite direction to that used for bacterial cell emplacement. Inverse modeling was conducted by coupling the reactive transport code TOUGHREACT to UCODE for estimating chemical reaction rate parameters with a good match to the experimental data. It was found, however, that the choice of parameters and data was not sufficient to determine a unique solution, and our findings suggest that additional time and space-varying analytical data of aqueous species would improve the accuracy of numerical modeling of MICP.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-011-9804-z</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-3913 |
ispartof | Transport in porous media, 2011-10, Vol.90 (1), p.23-39 |
issn | 0169-3913 1573-1634 |
language | eng |
recordid | cdi_osti_scitechconnect_1154168 |
source | SpringerLink Journals |
subjects | Calcite Calcium carbonate Chemical precipitation Chemical reactions Civil Engineering Classical and Continuum Physics Coprecipitation Earth and Environmental Science Earth Sciences Earth, ocean, space Engineering and environment geology. Geothermics Exact sciences and technology Geotechnical Engineering & Applied Earth Sciences Hydrocarbons Hydrogeology Hydrology. Hydrogeology Hydrology/Water Resources Industrial Chemistry/Chemical Engineering Laboratory tests Mathematical models Model accuracy Organic chemistry Parameter estimation Pollution, environment geology Porous media Radioisotopes Sedimentary rocks Trace metals |
title | Forward and Inverse Bio-Geochemical Modeling of Microbially Induced Calcite Precipitation in Half-Meter Column Experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forward%20and%20Inverse%20Bio-Geochemical%20Modeling%20of%20Microbially%20Induced%20Calcite%20Precipitation%20in%20Half-Meter%20Column%20Experiments&rft.jtitle=Transport%20in%20porous%20media&rft.au=Barkouki,%20T.%20H.&rft.aucorp=Subsurface%20Biogeochemical%20Research%20(SBR)&rft.date=2011-10-01&rft.volume=90&rft.issue=1&rft.spage=23&rft.epage=39&rft.pages=23-39&rft.issn=0169-3913&rft.eissn=1573-1634&rft.coden=TPMEEI&rft_id=info:doi/10.1007/s11242-011-9804-z&rft_dat=%3Cproquest_osti_%3E2258177888%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2258177888&rft_id=info:pmid/&rfr_iscdi=true |