Forward and Inverse Bio-Geochemical Modeling of Microbially Induced Calcite Precipitation in Half-Meter Column Experiments

Microbially induced calcite precipitation (MICP) offers an alternative solution to a wide range of civil engineering problems. Laboratory tests have shown that MICP can immobilize trace metals and radionuclides through co-precipitation with calcium carbonate. MICP has also been shown to improve the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transport in porous media 2011-10, Vol.90 (1), p.23-39
Hauptverfasser: Barkouki, T. H., Martinez, B. C., Mortensen, B. M., Weathers, T. S., De Jong, J. D., Ginn, T. R., Spycher, N. F., Smith, R. W., Fujita, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39
container_issue 1
container_start_page 23
container_title Transport in porous media
container_volume 90
creator Barkouki, T. H.
Martinez, B. C.
Mortensen, B. M.
Weathers, T. S.
De Jong, J. D.
Ginn, T. R.
Spycher, N. F.
Smith, R. W.
Fujita, Y.
description Microbially induced calcite precipitation (MICP) offers an alternative solution to a wide range of civil engineering problems. Laboratory tests have shown that MICP can immobilize trace metals and radionuclides through co-precipitation with calcium carbonate. MICP has also been shown to improve the undrained shear response of soils and offers potential benefits over current ground improvement techniques that may pose environmental risks and suffer from low “certainty of execution.” Our objective is to identify an effective means of achieving uniform distribution of precipitate in a one-dimensional porous medium. Our approach involves column experiments and numerical modeling of MICP in both forward and inverse senses, using a simplified reaction network, with the bacterial strain Sporoscarcina pasteurii . It was found that the stop-flow injection of a urea- and calcium-rich solution produces a more uniform calcite distribution as compared to a continuous injection method, even when both methods involve flow in opposite direction to that used for bacterial cell emplacement. Inverse modeling was conducted by coupling the reactive transport code TOUGHREACT to UCODE for estimating chemical reaction rate parameters with a good match to the experimental data. It was found, however, that the choice of parameters and data was not sufficient to determine a unique solution, and our findings suggest that additional time and space-varying analytical data of aqueous species would improve the accuracy of numerical modeling of MICP.
doi_str_mv 10.1007/s11242-011-9804-z
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1154168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2258177888</sourcerecordid><originalsourceid>FETCH-LOGICAL-a462t-e3e4e08617098d63b9a861350cb085898b426dbfb55b6efdd7d8956abeddced23</originalsourceid><addsrcrecordid>eNp1kUuPFCEUhYnRxHb0B7gjGpcor6KopXbmlUzHWYxrQsGtGSbV0AI9j_710qmJrlzdkPudk8M9CH1k9CujtP9WGOOSE8oYGTSV5PAKrVjXC8KUkK_RijI1EDEw8Ra9K-We0qbScoUOZyk_2uyxjR5fxgfIBfCPkMg5JHcH2-DsjDfJwxziLU4T3gSX0xjsPD833u8deLy2swsV8HUGF3ah2hpSxCHiCztPZAMVMl6neb-N-PRpBzlsIdbyHr2Z7Fzgw8s8Qb_OTm_WF-Tq5_nl-vsVsVLxSkCABKoV6-mgvRLjYNtDdNSNVHd60KPkyo_T2HWjgsn73uuhU3YE71s4Lk7Qp8U3lRpMOSZ1dy7FCK4axjrJlG7Q5wXa5fR7D6Wa-7TPseUynHea9b3WR4otVLtBKRkms2ufsfnZMGqOPZilB9N6MMcezKFpvrw429KOOWUbXSh_hVyqQSgqG8cXrrRVvIX8L8H_zf8ABB2ZMQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258177888</pqid></control><display><type>article</type><title>Forward and Inverse Bio-Geochemical Modeling of Microbially Induced Calcite Precipitation in Half-Meter Column Experiments</title><source>SpringerLink Journals</source><creator>Barkouki, T. H. ; Martinez, B. C. ; Mortensen, B. M. ; Weathers, T. S. ; De Jong, J. D. ; Ginn, T. R. ; Spycher, N. F. ; Smith, R. W. ; Fujita, Y.</creator><creatorcontrib>Barkouki, T. H. ; Martinez, B. C. ; Mortensen, B. M. ; Weathers, T. S. ; De Jong, J. D. ; Ginn, T. R. ; Spycher, N. F. ; Smith, R. W. ; Fujita, Y. ; Subsurface Biogeochemical Research (SBR)</creatorcontrib><description>Microbially induced calcite precipitation (MICP) offers an alternative solution to a wide range of civil engineering problems. Laboratory tests have shown that MICP can immobilize trace metals and radionuclides through co-precipitation with calcium carbonate. MICP has also been shown to improve the undrained shear response of soils and offers potential benefits over current ground improvement techniques that may pose environmental risks and suffer from low “certainty of execution.” Our objective is to identify an effective means of achieving uniform distribution of precipitate in a one-dimensional porous medium. Our approach involves column experiments and numerical modeling of MICP in both forward and inverse senses, using a simplified reaction network, with the bacterial strain Sporoscarcina pasteurii . It was found that the stop-flow injection of a urea- and calcium-rich solution produces a more uniform calcite distribution as compared to a continuous injection method, even when both methods involve flow in opposite direction to that used for bacterial cell emplacement. Inverse modeling was conducted by coupling the reactive transport code TOUGHREACT to UCODE for estimating chemical reaction rate parameters with a good match to the experimental data. It was found, however, that the choice of parameters and data was not sufficient to determine a unique solution, and our findings suggest that additional time and space-varying analytical data of aqueous species would improve the accuracy of numerical modeling of MICP.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-011-9804-z</identifier><identifier>CODEN: TPMEEI</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Calcite ; Calcium carbonate ; Chemical precipitation ; Chemical reactions ; Civil Engineering ; Classical and Continuum Physics ; Coprecipitation ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrocarbons ; Hydrogeology ; Hydrology. Hydrogeology ; Hydrology/Water Resources ; Industrial Chemistry/Chemical Engineering ; Laboratory tests ; Mathematical models ; Model accuracy ; Organic chemistry ; Parameter estimation ; Pollution, environment geology ; Porous media ; Radioisotopes ; Sedimentary rocks ; Trace metals</subject><ispartof>Transport in porous media, 2011-10, Vol.90 (1), p.23-39</ispartof><rights>Springer Science+Business Media B.V. 2011</rights><rights>2015 INIST-CNRS</rights><rights>Transport in Porous Media is a copyright of Springer, (2011). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a462t-e3e4e08617098d63b9a861350cb085898b426dbfb55b6efdd7d8956abeddced23</citedby><cites>FETCH-LOGICAL-a462t-e3e4e08617098d63b9a861350cb085898b426dbfb55b6efdd7d8956abeddced23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11242-011-9804-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11242-011-9804-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,881,23909,23910,25118,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24693604$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1154168$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Barkouki, T. H.</creatorcontrib><creatorcontrib>Martinez, B. C.</creatorcontrib><creatorcontrib>Mortensen, B. M.</creatorcontrib><creatorcontrib>Weathers, T. S.</creatorcontrib><creatorcontrib>De Jong, J. D.</creatorcontrib><creatorcontrib>Ginn, T. R.</creatorcontrib><creatorcontrib>Spycher, N. F.</creatorcontrib><creatorcontrib>Smith, R. W.</creatorcontrib><creatorcontrib>Fujita, Y.</creatorcontrib><creatorcontrib>Subsurface Biogeochemical Research (SBR)</creatorcontrib><title>Forward and Inverse Bio-Geochemical Modeling of Microbially Induced Calcite Precipitation in Half-Meter Column Experiments</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>Microbially induced calcite precipitation (MICP) offers an alternative solution to a wide range of civil engineering problems. Laboratory tests have shown that MICP can immobilize trace metals and radionuclides through co-precipitation with calcium carbonate. MICP has also been shown to improve the undrained shear response of soils and offers potential benefits over current ground improvement techniques that may pose environmental risks and suffer from low “certainty of execution.” Our objective is to identify an effective means of achieving uniform distribution of precipitate in a one-dimensional porous medium. Our approach involves column experiments and numerical modeling of MICP in both forward and inverse senses, using a simplified reaction network, with the bacterial strain Sporoscarcina pasteurii . It was found that the stop-flow injection of a urea- and calcium-rich solution produces a more uniform calcite distribution as compared to a continuous injection method, even when both methods involve flow in opposite direction to that used for bacterial cell emplacement. Inverse modeling was conducted by coupling the reactive transport code TOUGHREACT to UCODE for estimating chemical reaction rate parameters with a good match to the experimental data. It was found, however, that the choice of parameters and data was not sufficient to determine a unique solution, and our findings suggest that additional time and space-varying analytical data of aqueous species would improve the accuracy of numerical modeling of MICP.</description><subject>Calcite</subject><subject>Calcium carbonate</subject><subject>Chemical precipitation</subject><subject>Chemical reactions</subject><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Coprecipitation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrocarbons</subject><subject>Hydrogeology</subject><subject>Hydrology. Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Laboratory tests</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Organic chemistry</subject><subject>Parameter estimation</subject><subject>Pollution, environment geology</subject><subject>Porous media</subject><subject>Radioisotopes</subject><subject>Sedimentary rocks</subject><subject>Trace metals</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kUuPFCEUhYnRxHb0B7gjGpcor6KopXbmlUzHWYxrQsGtGSbV0AI9j_710qmJrlzdkPudk8M9CH1k9CujtP9WGOOSE8oYGTSV5PAKrVjXC8KUkK_RijI1EDEw8Ra9K-We0qbScoUOZyk_2uyxjR5fxgfIBfCPkMg5JHcH2-DsjDfJwxziLU4T3gSX0xjsPD833u8deLy2swsV8HUGF3ah2hpSxCHiCztPZAMVMl6neb-N-PRpBzlsIdbyHr2Z7Fzgw8s8Qb_OTm_WF-Tq5_nl-vsVsVLxSkCABKoV6-mgvRLjYNtDdNSNVHd60KPkyo_T2HWjgsn73uuhU3YE71s4Lk7Qp8U3lRpMOSZ1dy7FCK4axjrJlG7Q5wXa5fR7D6Wa-7TPseUynHea9b3WR4otVLtBKRkms2ufsfnZMGqOPZilB9N6MMcezKFpvrw429KOOWUbXSh_hVyqQSgqG8cXrrRVvIX8L8H_zf8ABB2ZMQ</recordid><startdate>20111001</startdate><enddate>20111001</enddate><creator>Barkouki, T. H.</creator><creator>Martinez, B. C.</creator><creator>Mortensen, B. M.</creator><creator>Weathers, T. S.</creator><creator>De Jong, J. D.</creator><creator>Ginn, T. R.</creator><creator>Spycher, N. F.</creator><creator>Smith, R. W.</creator><creator>Fujita, Y.</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>OTOTI</scope></search><sort><creationdate>20111001</creationdate><title>Forward and Inverse Bio-Geochemical Modeling of Microbially Induced Calcite Precipitation in Half-Meter Column Experiments</title><author>Barkouki, T. H. ; Martinez, B. C. ; Mortensen, B. M. ; Weathers, T. S. ; De Jong, J. D. ; Ginn, T. R. ; Spycher, N. F. ; Smith, R. W. ; Fujita, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a462t-e3e4e08617098d63b9a861350cb085898b426dbfb55b6efdd7d8956abeddced23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Calcite</topic><topic>Calcium carbonate</topic><topic>Chemical precipitation</topic><topic>Chemical reactions</topic><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Coprecipitation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrocarbons</topic><topic>Hydrogeology</topic><topic>Hydrology. Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Laboratory tests</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Organic chemistry</topic><topic>Parameter estimation</topic><topic>Pollution, environment geology</topic><topic>Porous media</topic><topic>Radioisotopes</topic><topic>Sedimentary rocks</topic><topic>Trace metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barkouki, T. H.</creatorcontrib><creatorcontrib>Martinez, B. C.</creatorcontrib><creatorcontrib>Mortensen, B. M.</creatorcontrib><creatorcontrib>Weathers, T. S.</creatorcontrib><creatorcontrib>De Jong, J. D.</creatorcontrib><creatorcontrib>Ginn, T. R.</creatorcontrib><creatorcontrib>Spycher, N. F.</creatorcontrib><creatorcontrib>Smith, R. W.</creatorcontrib><creatorcontrib>Fujita, Y.</creatorcontrib><creatorcontrib>Subsurface Biogeochemical Research (SBR)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>OSTI.GOV</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barkouki, T. H.</au><au>Martinez, B. C.</au><au>Mortensen, B. M.</au><au>Weathers, T. S.</au><au>De Jong, J. D.</au><au>Ginn, T. R.</au><au>Spycher, N. F.</au><au>Smith, R. W.</au><au>Fujita, Y.</au><aucorp>Subsurface Biogeochemical Research (SBR)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forward and Inverse Bio-Geochemical Modeling of Microbially Induced Calcite Precipitation in Half-Meter Column Experiments</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2011-10-01</date><risdate>2011</risdate><volume>90</volume><issue>1</issue><spage>23</spage><epage>39</epage><pages>23-39</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><coden>TPMEEI</coden><abstract>Microbially induced calcite precipitation (MICP) offers an alternative solution to a wide range of civil engineering problems. Laboratory tests have shown that MICP can immobilize trace metals and radionuclides through co-precipitation with calcium carbonate. MICP has also been shown to improve the undrained shear response of soils and offers potential benefits over current ground improvement techniques that may pose environmental risks and suffer from low “certainty of execution.” Our objective is to identify an effective means of achieving uniform distribution of precipitate in a one-dimensional porous medium. Our approach involves column experiments and numerical modeling of MICP in both forward and inverse senses, using a simplified reaction network, with the bacterial strain Sporoscarcina pasteurii . It was found that the stop-flow injection of a urea- and calcium-rich solution produces a more uniform calcite distribution as compared to a continuous injection method, even when both methods involve flow in opposite direction to that used for bacterial cell emplacement. Inverse modeling was conducted by coupling the reactive transport code TOUGHREACT to UCODE for estimating chemical reaction rate parameters with a good match to the experimental data. It was found, however, that the choice of parameters and data was not sufficient to determine a unique solution, and our findings suggest that additional time and space-varying analytical data of aqueous species would improve the accuracy of numerical modeling of MICP.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-011-9804-z</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-3913
ispartof Transport in porous media, 2011-10, Vol.90 (1), p.23-39
issn 0169-3913
1573-1634
language eng
recordid cdi_osti_scitechconnect_1154168
source SpringerLink Journals
subjects Calcite
Calcium carbonate
Chemical precipitation
Chemical reactions
Civil Engineering
Classical and Continuum Physics
Coprecipitation
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
Geotechnical Engineering & Applied Earth Sciences
Hydrocarbons
Hydrogeology
Hydrology. Hydrogeology
Hydrology/Water Resources
Industrial Chemistry/Chemical Engineering
Laboratory tests
Mathematical models
Model accuracy
Organic chemistry
Parameter estimation
Pollution, environment geology
Porous media
Radioisotopes
Sedimentary rocks
Trace metals
title Forward and Inverse Bio-Geochemical Modeling of Microbially Induced Calcite Precipitation in Half-Meter Column Experiments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A53%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forward%20and%20Inverse%20Bio-Geochemical%20Modeling%20of%20Microbially%20Induced%20Calcite%20Precipitation%20in%20Half-Meter%20Column%20Experiments&rft.jtitle=Transport%20in%20porous%20media&rft.au=Barkouki,%20T.%20H.&rft.aucorp=Subsurface%20Biogeochemical%20Research%20(SBR)&rft.date=2011-10-01&rft.volume=90&rft.issue=1&rft.spage=23&rft.epage=39&rft.pages=23-39&rft.issn=0169-3913&rft.eissn=1573-1634&rft.coden=TPMEEI&rft_id=info:doi/10.1007/s11242-011-9804-z&rft_dat=%3Cproquest_osti_%3E2258177888%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2258177888&rft_id=info:pmid/&rfr_iscdi=true