Supercapacitors Based on c-Type Cytochromes Using Conductive Nanostructured Networks of Living Bacteria
Supercapacitors have attracted interest in energy storage because they have the potential to complement or replace batteries. Here, we report that c‐type cytochromes, naturally immersed in a living, electrically conductive microbial biofilm, greatly enhance the device capacitance by over two orders...
Gespeichert in:
Veröffentlicht in: | Chemphyschem 2012-02, Vol.13 (2), p.463-468 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 468 |
---|---|
container_issue | 2 |
container_start_page | 463 |
container_title | Chemphyschem |
container_volume | 13 |
creator | Malvankar, Nikhil S. Mester, Tünde Tuominen, Mark T. Lovley, Derek R. |
description | Supercapacitors have attracted interest in energy storage because they have the potential to complement or replace batteries. Here, we report that c‐type cytochromes, naturally immersed in a living, electrically conductive microbial biofilm, greatly enhance the device capacitance by over two orders of magnitude. We employ genetic engineering, protein unfolding and Nernstian modeling for in vivo demonstration of charge storage capacity of c‐type cytochromes and perform electrochemical impedance spectroscopy, cyclic voltammetry and charge–discharge cycling to confirm the pseudocapacitive, redox nature of biofilm capacitance. The biofilms also show low self‐discharge and good charge/discharge reversibility. The superior electrochemical performance of the biofilm is related to its high abundance of cytochromes, providing large electron storage capacity, its nanostructured network with metallic‐like conductivity, and its porous architecture with hydrous nature, offering prospects for future low cost and environmentally sustainable energy storage devices.
Living supercapacitors: The capacitance of an electrode‐based device can be enhanced 100‐fold using the redox chemistry of c‐type cytochromes naturally embedded in an electrically conductive network of living bacteria (see picture). This study demonstrates the unique survival strategy by metal‐respiring bacteria when electron acceptors are temporarily unavailable and suggests a novel method for supercapacitive energy storage using self‐renewing microbes. |
doi_str_mv | 10.1002/cphc.201100865 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1154135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>918932333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5455-c4683e1bbddf9befb6ab39842974448e49b2e60fe27b6298bf7cce6f3b74ce643</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EomVgyxJZSIhVhviVxEsaQQsaDYi26tKynZuOaSZO7aRl_j0eZRjY4c31lb5zXweh1yRfkjynH-ywsUuak5RUhXiCTglnMisLTp4e_pwycYJexPgzT0xekufohFIqGCXiFN1eTgMEqwdt3ehDxGc6QoN9j212tRsA17vR203wW4j4Orr-Fte-byY7ugfAa937OIaUTSGp1jA--nAXsW_xyj3s4TNtRwhOv0TPWt1FeHWIC3T9-dNVfZGtvp1_qT-uMiu4EJnlRcWAGNM0rTTQmkIbJitOZck5r4BLQ6HIW6ClKaisTFtaC0XLTMlT5GyB3s5101xOxbQU2I31fQ92VIQITphI0PsZGoK_nyCOauuiha7TPfgpKkkqyShLb4GWM2mDjzFAq4bgtjrsFMnV3gC1N0AdDUiCN4fSk9lCc8T_XDwB7w6AjlZ3bdC9dfEvJwqWy7JKnJy5R9fB7j9tVf39ov53iGzWujjCr6NWhztVlKwU6mZ9rtZfLwm_-cEVYb8B-_OvPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>918932333</pqid></control><display><type>article</type><title>Supercapacitors Based on c-Type Cytochromes Using Conductive Nanostructured Networks of Living Bacteria</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Malvankar, Nikhil S. ; Mester, Tünde ; Tuominen, Mark T. ; Lovley, Derek R.</creator><creatorcontrib>Malvankar, Nikhil S. ; Mester, Tünde ; Tuominen, Mark T. ; Lovley, Derek R. ; Subsurface Biogeochemical Research (SBR)</creatorcontrib><description>Supercapacitors have attracted interest in energy storage because they have the potential to complement or replace batteries. Here, we report that c‐type cytochromes, naturally immersed in a living, electrically conductive microbial biofilm, greatly enhance the device capacitance by over two orders of magnitude. We employ genetic engineering, protein unfolding and Nernstian modeling for in vivo demonstration of charge storage capacity of c‐type cytochromes and perform electrochemical impedance spectroscopy, cyclic voltammetry and charge–discharge cycling to confirm the pseudocapacitive, redox nature of biofilm capacitance. The biofilms also show low self‐discharge and good charge/discharge reversibility. The superior electrochemical performance of the biofilm is related to its high abundance of cytochromes, providing large electron storage capacity, its nanostructured network with metallic‐like conductivity, and its porous architecture with hydrous nature, offering prospects for future low cost and environmentally sustainable energy storage devices.
Living supercapacitors: The capacitance of an electrode‐based device can be enhanced 100‐fold using the redox chemistry of c‐type cytochromes naturally embedded in an electrically conductive network of living bacteria (see picture). This study demonstrates the unique survival strategy by metal‐respiring bacteria when electron acceptors are temporarily unavailable and suggests a novel method for supercapacitive energy storage using self‐renewing microbes.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.201100865</identifier><identifier>PMID: 22253215</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>bacteria ; Bacteria - chemistry ; Bacteria - metabolism ; Biofilms ; Biological and medical sciences ; Biotechnology ; Cytochrome c Group - chemistry ; Cytochrome c Group - metabolism ; cytochromes ; Dielectric Spectroscopy ; Electric Capacitance ; electrochemistry ; Electrodes ; Fundamental and applied biological sciences. Psychology ; Geobacter - physiology ; Industrial applications and implications. Economical aspects ; Nanostructures - chemistry ; Other applications ; Oxidation-Reduction ; redox chemistry ; supercapacitors</subject><ispartof>Chemphyschem, 2012-02, Vol.13 (2), p.463-468</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5455-c4683e1bbddf9befb6ab39842974448e49b2e60fe27b6298bf7cce6f3b74ce643</citedby><cites>FETCH-LOGICAL-c5455-c4683e1bbddf9befb6ab39842974448e49b2e60fe27b6298bf7cce6f3b74ce643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcphc.201100865$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcphc.201100865$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25630978$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22253215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1154135$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Malvankar, Nikhil S.</creatorcontrib><creatorcontrib>Mester, Tünde</creatorcontrib><creatorcontrib>Tuominen, Mark T.</creatorcontrib><creatorcontrib>Lovley, Derek R.</creatorcontrib><creatorcontrib>Subsurface Biogeochemical Research (SBR)</creatorcontrib><title>Supercapacitors Based on c-Type Cytochromes Using Conductive Nanostructured Networks of Living Bacteria</title><title>Chemphyschem</title><addtitle>ChemPhysChem</addtitle><description>Supercapacitors have attracted interest in energy storage because they have the potential to complement or replace batteries. Here, we report that c‐type cytochromes, naturally immersed in a living, electrically conductive microbial biofilm, greatly enhance the device capacitance by over two orders of magnitude. We employ genetic engineering, protein unfolding and Nernstian modeling for in vivo demonstration of charge storage capacity of c‐type cytochromes and perform electrochemical impedance spectroscopy, cyclic voltammetry and charge–discharge cycling to confirm the pseudocapacitive, redox nature of biofilm capacitance. The biofilms also show low self‐discharge and good charge/discharge reversibility. The superior electrochemical performance of the biofilm is related to its high abundance of cytochromes, providing large electron storage capacity, its nanostructured network with metallic‐like conductivity, and its porous architecture with hydrous nature, offering prospects for future low cost and environmentally sustainable energy storage devices.
Living supercapacitors: The capacitance of an electrode‐based device can be enhanced 100‐fold using the redox chemistry of c‐type cytochromes naturally embedded in an electrically conductive network of living bacteria (see picture). This study demonstrates the unique survival strategy by metal‐respiring bacteria when electron acceptors are temporarily unavailable and suggests a novel method for supercapacitive energy storage using self‐renewing microbes.</description><subject>bacteria</subject><subject>Bacteria - chemistry</subject><subject>Bacteria - metabolism</subject><subject>Biofilms</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cytochrome c Group - chemistry</subject><subject>Cytochrome c Group - metabolism</subject><subject>cytochromes</subject><subject>Dielectric Spectroscopy</subject><subject>Electric Capacitance</subject><subject>electrochemistry</subject><subject>Electrodes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Geobacter - physiology</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Nanostructures - chemistry</subject><subject>Other applications</subject><subject>Oxidation-Reduction</subject><subject>redox chemistry</subject><subject>supercapacitors</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhS0EomVgyxJZSIhVhviVxEsaQQsaDYi26tKynZuOaSZO7aRl_j0eZRjY4c31lb5zXweh1yRfkjynH-ywsUuak5RUhXiCTglnMisLTp4e_pwycYJexPgzT0xekufohFIqGCXiFN1eTgMEqwdt3ehDxGc6QoN9j212tRsA17vR203wW4j4Orr-Fte-byY7ugfAa937OIaUTSGp1jA--nAXsW_xyj3s4TNtRwhOv0TPWt1FeHWIC3T9-dNVfZGtvp1_qT-uMiu4EJnlRcWAGNM0rTTQmkIbJitOZck5r4BLQ6HIW6ClKaisTFtaC0XLTMlT5GyB3s5101xOxbQU2I31fQ92VIQITphI0PsZGoK_nyCOauuiha7TPfgpKkkqyShLb4GWM2mDjzFAq4bgtjrsFMnV3gC1N0AdDUiCN4fSk9lCc8T_XDwB7w6AjlZ3bdC9dfEvJwqWy7JKnJy5R9fB7j9tVf39ov53iGzWujjCr6NWhztVlKwU6mZ9rtZfLwm_-cEVYb8B-_OvPg</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Malvankar, Nikhil S.</creator><creator>Mester, Tünde</creator><creator>Tuominen, Mark T.</creator><creator>Lovley, Derek R.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>201202</creationdate><title>Supercapacitors Based on c-Type Cytochromes Using Conductive Nanostructured Networks of Living Bacteria</title><author>Malvankar, Nikhil S. ; Mester, Tünde ; Tuominen, Mark T. ; Lovley, Derek R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5455-c4683e1bbddf9befb6ab39842974448e49b2e60fe27b6298bf7cce6f3b74ce643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>bacteria</topic><topic>Bacteria - chemistry</topic><topic>Bacteria - metabolism</topic><topic>Biofilms</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cytochrome c Group - chemistry</topic><topic>Cytochrome c Group - metabolism</topic><topic>cytochromes</topic><topic>Dielectric Spectroscopy</topic><topic>Electric Capacitance</topic><topic>electrochemistry</topic><topic>Electrodes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Geobacter - physiology</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Nanostructures - chemistry</topic><topic>Other applications</topic><topic>Oxidation-Reduction</topic><topic>redox chemistry</topic><topic>supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malvankar, Nikhil S.</creatorcontrib><creatorcontrib>Mester, Tünde</creatorcontrib><creatorcontrib>Tuominen, Mark T.</creatorcontrib><creatorcontrib>Lovley, Derek R.</creatorcontrib><creatorcontrib>Subsurface Biogeochemical Research (SBR)</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malvankar, Nikhil S.</au><au>Mester, Tünde</au><au>Tuominen, Mark T.</au><au>Lovley, Derek R.</au><aucorp>Subsurface Biogeochemical Research (SBR)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supercapacitors Based on c-Type Cytochromes Using Conductive Nanostructured Networks of Living Bacteria</atitle><jtitle>Chemphyschem</jtitle><addtitle>ChemPhysChem</addtitle><date>2012-02</date><risdate>2012</risdate><volume>13</volume><issue>2</issue><spage>463</spage><epage>468</epage><pages>463-468</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Supercapacitors have attracted interest in energy storage because they have the potential to complement or replace batteries. Here, we report that c‐type cytochromes, naturally immersed in a living, electrically conductive microbial biofilm, greatly enhance the device capacitance by over two orders of magnitude. We employ genetic engineering, protein unfolding and Nernstian modeling for in vivo demonstration of charge storage capacity of c‐type cytochromes and perform electrochemical impedance spectroscopy, cyclic voltammetry and charge–discharge cycling to confirm the pseudocapacitive, redox nature of biofilm capacitance. The biofilms also show low self‐discharge and good charge/discharge reversibility. The superior electrochemical performance of the biofilm is related to its high abundance of cytochromes, providing large electron storage capacity, its nanostructured network with metallic‐like conductivity, and its porous architecture with hydrous nature, offering prospects for future low cost and environmentally sustainable energy storage devices.
Living supercapacitors: The capacitance of an electrode‐based device can be enhanced 100‐fold using the redox chemistry of c‐type cytochromes naturally embedded in an electrically conductive network of living bacteria (see picture). This study demonstrates the unique survival strategy by metal‐respiring bacteria when electron acceptors are temporarily unavailable and suggests a novel method for supercapacitive energy storage using self‐renewing microbes.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>22253215</pmid><doi>10.1002/cphc.201100865</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4235 |
ispartof | Chemphyschem, 2012-02, Vol.13 (2), p.463-468 |
issn | 1439-4235 1439-7641 |
language | eng |
recordid | cdi_osti_scitechconnect_1154135 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | bacteria Bacteria - chemistry Bacteria - metabolism Biofilms Biological and medical sciences Biotechnology Cytochrome c Group - chemistry Cytochrome c Group - metabolism cytochromes Dielectric Spectroscopy Electric Capacitance electrochemistry Electrodes Fundamental and applied biological sciences. Psychology Geobacter - physiology Industrial applications and implications. Economical aspects Nanostructures - chemistry Other applications Oxidation-Reduction redox chemistry supercapacitors |
title | Supercapacitors Based on c-Type Cytochromes Using Conductive Nanostructured Networks of Living Bacteria |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A41%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supercapacitors%20Based%20on%20c-Type%20Cytochromes%20Using%20Conductive%20Nanostructured%20Networks%20of%20Living%20Bacteria&rft.jtitle=Chemphyschem&rft.au=Malvankar,%20Nikhil%20S.&rft.aucorp=Subsurface%20Biogeochemical%20Research%20(SBR)&rft.date=2012-02&rft.volume=13&rft.issue=2&rft.spage=463&rft.epage=468&rft.pages=463-468&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.201100865&rft_dat=%3Cproquest_osti_%3E918932333%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=918932333&rft_id=info:pmid/22253215&rfr_iscdi=true |