Supercapacitors Based on c-Type Cytochromes Using Conductive Nanostructured Networks of Living Bacteria

Supercapacitors have attracted interest in energy storage because they have the potential to complement or replace batteries. Here, we report that c‐type cytochromes, naturally immersed in a living, electrically conductive microbial biofilm, greatly enhance the device capacitance by over two orders...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemphyschem 2012-02, Vol.13 (2), p.463-468
Hauptverfasser: Malvankar, Nikhil S., Mester, Tünde, Tuominen, Mark T., Lovley, Derek R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 468
container_issue 2
container_start_page 463
container_title Chemphyschem
container_volume 13
creator Malvankar, Nikhil S.
Mester, Tünde
Tuominen, Mark T.
Lovley, Derek R.
description Supercapacitors have attracted interest in energy storage because they have the potential to complement or replace batteries. Here, we report that c‐type cytochromes, naturally immersed in a living, electrically conductive microbial biofilm, greatly enhance the device capacitance by over two orders of magnitude. We employ genetic engineering, protein unfolding and Nernstian modeling for in vivo demonstration of charge storage capacity of c‐type cytochromes and perform electrochemical impedance spectroscopy, cyclic voltammetry and charge–discharge cycling to confirm the pseudocapacitive, redox nature of biofilm capacitance. The biofilms also show low self‐discharge and good charge/discharge reversibility. The superior electrochemical performance of the biofilm is related to its high abundance of cytochromes, providing large electron storage capacity, its nanostructured network with metallic‐like conductivity, and its porous architecture with hydrous nature, offering prospects for future low cost and environmentally sustainable energy storage devices. Living supercapacitors: The capacitance of an electrode‐based device can be enhanced 100‐fold using the redox chemistry of c‐type cytochromes naturally embedded in an electrically conductive network of living bacteria (see picture). This study demonstrates the unique survival strategy by metal‐respiring bacteria when electron acceptors are temporarily unavailable and suggests a novel method for supercapacitive energy storage using self‐renewing microbes.
doi_str_mv 10.1002/cphc.201100865
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1154135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>918932333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5455-c4683e1bbddf9befb6ab39842974448e49b2e60fe27b6298bf7cce6f3b74ce643</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EomVgyxJZSIhVhviVxEsaQQsaDYi26tKynZuOaSZO7aRl_j0eZRjY4c31lb5zXweh1yRfkjynH-ywsUuak5RUhXiCTglnMisLTp4e_pwycYJexPgzT0xekufohFIqGCXiFN1eTgMEqwdt3ehDxGc6QoN9j212tRsA17vR203wW4j4Orr-Fte-byY7ugfAa937OIaUTSGp1jA--nAXsW_xyj3s4TNtRwhOv0TPWt1FeHWIC3T9-dNVfZGtvp1_qT-uMiu4EJnlRcWAGNM0rTTQmkIbJitOZck5r4BLQ6HIW6ClKaisTFtaC0XLTMlT5GyB3s5101xOxbQU2I31fQ92VIQITphI0PsZGoK_nyCOauuiha7TPfgpKkkqyShLb4GWM2mDjzFAq4bgtjrsFMnV3gC1N0AdDUiCN4fSk9lCc8T_XDwB7w6AjlZ3bdC9dfEvJwqWy7JKnJy5R9fB7j9tVf39ov53iGzWujjCr6NWhztVlKwU6mZ9rtZfLwm_-cEVYb8B-_OvPg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>918932333</pqid></control><display><type>article</type><title>Supercapacitors Based on c-Type Cytochromes Using Conductive Nanostructured Networks of Living Bacteria</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Malvankar, Nikhil S. ; Mester, Tünde ; Tuominen, Mark T. ; Lovley, Derek R.</creator><creatorcontrib>Malvankar, Nikhil S. ; Mester, Tünde ; Tuominen, Mark T. ; Lovley, Derek R. ; Subsurface Biogeochemical Research (SBR)</creatorcontrib><description>Supercapacitors have attracted interest in energy storage because they have the potential to complement or replace batteries. Here, we report that c‐type cytochromes, naturally immersed in a living, electrically conductive microbial biofilm, greatly enhance the device capacitance by over two orders of magnitude. We employ genetic engineering, protein unfolding and Nernstian modeling for in vivo demonstration of charge storage capacity of c‐type cytochromes and perform electrochemical impedance spectroscopy, cyclic voltammetry and charge–discharge cycling to confirm the pseudocapacitive, redox nature of biofilm capacitance. The biofilms also show low self‐discharge and good charge/discharge reversibility. The superior electrochemical performance of the biofilm is related to its high abundance of cytochromes, providing large electron storage capacity, its nanostructured network with metallic‐like conductivity, and its porous architecture with hydrous nature, offering prospects for future low cost and environmentally sustainable energy storage devices. Living supercapacitors: The capacitance of an electrode‐based device can be enhanced 100‐fold using the redox chemistry of c‐type cytochromes naturally embedded in an electrically conductive network of living bacteria (see picture). This study demonstrates the unique survival strategy by metal‐respiring bacteria when electron acceptors are temporarily unavailable and suggests a novel method for supercapacitive energy storage using self‐renewing microbes.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.201100865</identifier><identifier>PMID: 22253215</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>bacteria ; Bacteria - chemistry ; Bacteria - metabolism ; Biofilms ; Biological and medical sciences ; Biotechnology ; Cytochrome c Group - chemistry ; Cytochrome c Group - metabolism ; cytochromes ; Dielectric Spectroscopy ; Electric Capacitance ; electrochemistry ; Electrodes ; Fundamental and applied biological sciences. Psychology ; Geobacter - physiology ; Industrial applications and implications. Economical aspects ; Nanostructures - chemistry ; Other applications ; Oxidation-Reduction ; redox chemistry ; supercapacitors</subject><ispartof>Chemphyschem, 2012-02, Vol.13 (2), p.463-468</ispartof><rights>Copyright © 2012 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5455-c4683e1bbddf9befb6ab39842974448e49b2e60fe27b6298bf7cce6f3b74ce643</citedby><cites>FETCH-LOGICAL-c5455-c4683e1bbddf9befb6ab39842974448e49b2e60fe27b6298bf7cce6f3b74ce643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcphc.201100865$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcphc.201100865$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25630978$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22253215$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1154135$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Malvankar, Nikhil S.</creatorcontrib><creatorcontrib>Mester, Tünde</creatorcontrib><creatorcontrib>Tuominen, Mark T.</creatorcontrib><creatorcontrib>Lovley, Derek R.</creatorcontrib><creatorcontrib>Subsurface Biogeochemical Research (SBR)</creatorcontrib><title>Supercapacitors Based on c-Type Cytochromes Using Conductive Nanostructured Networks of Living Bacteria</title><title>Chemphyschem</title><addtitle>ChemPhysChem</addtitle><description>Supercapacitors have attracted interest in energy storage because they have the potential to complement or replace batteries. Here, we report that c‐type cytochromes, naturally immersed in a living, electrically conductive microbial biofilm, greatly enhance the device capacitance by over two orders of magnitude. We employ genetic engineering, protein unfolding and Nernstian modeling for in vivo demonstration of charge storage capacity of c‐type cytochromes and perform electrochemical impedance spectroscopy, cyclic voltammetry and charge–discharge cycling to confirm the pseudocapacitive, redox nature of biofilm capacitance. The biofilms also show low self‐discharge and good charge/discharge reversibility. The superior electrochemical performance of the biofilm is related to its high abundance of cytochromes, providing large electron storage capacity, its nanostructured network with metallic‐like conductivity, and its porous architecture with hydrous nature, offering prospects for future low cost and environmentally sustainable energy storage devices. Living supercapacitors: The capacitance of an electrode‐based device can be enhanced 100‐fold using the redox chemistry of c‐type cytochromes naturally embedded in an electrically conductive network of living bacteria (see picture). This study demonstrates the unique survival strategy by metal‐respiring bacteria when electron acceptors are temporarily unavailable and suggests a novel method for supercapacitive energy storage using self‐renewing microbes.</description><subject>bacteria</subject><subject>Bacteria - chemistry</subject><subject>Bacteria - metabolism</subject><subject>Biofilms</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cytochrome c Group - chemistry</subject><subject>Cytochrome c Group - metabolism</subject><subject>cytochromes</subject><subject>Dielectric Spectroscopy</subject><subject>Electric Capacitance</subject><subject>electrochemistry</subject><subject>Electrodes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Geobacter - physiology</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Nanostructures - chemistry</subject><subject>Other applications</subject><subject>Oxidation-Reduction</subject><subject>redox chemistry</subject><subject>supercapacitors</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhS0EomVgyxJZSIhVhviVxEsaQQsaDYi26tKynZuOaSZO7aRl_j0eZRjY4c31lb5zXweh1yRfkjynH-ywsUuak5RUhXiCTglnMisLTp4e_pwycYJexPgzT0xekufohFIqGCXiFN1eTgMEqwdt3ehDxGc6QoN9j212tRsA17vR203wW4j4Orr-Fte-byY7ugfAa937OIaUTSGp1jA--nAXsW_xyj3s4TNtRwhOv0TPWt1FeHWIC3T9-dNVfZGtvp1_qT-uMiu4EJnlRcWAGNM0rTTQmkIbJitOZck5r4BLQ6HIW6ClKaisTFtaC0XLTMlT5GyB3s5101xOxbQU2I31fQ92VIQITphI0PsZGoK_nyCOauuiha7TPfgpKkkqyShLb4GWM2mDjzFAq4bgtjrsFMnV3gC1N0AdDUiCN4fSk9lCc8T_XDwB7w6AjlZ3bdC9dfEvJwqWy7JKnJy5R9fB7j9tVf39ov53iGzWujjCr6NWhztVlKwU6mZ9rtZfLwm_-cEVYb8B-_OvPg</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Malvankar, Nikhil S.</creator><creator>Mester, Tünde</creator><creator>Tuominen, Mark T.</creator><creator>Lovley, Derek R.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>201202</creationdate><title>Supercapacitors Based on c-Type Cytochromes Using Conductive Nanostructured Networks of Living Bacteria</title><author>Malvankar, Nikhil S. ; Mester, Tünde ; Tuominen, Mark T. ; Lovley, Derek R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5455-c4683e1bbddf9befb6ab39842974448e49b2e60fe27b6298bf7cce6f3b74ce643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>bacteria</topic><topic>Bacteria - chemistry</topic><topic>Bacteria - metabolism</topic><topic>Biofilms</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cytochrome c Group - chemistry</topic><topic>Cytochrome c Group - metabolism</topic><topic>cytochromes</topic><topic>Dielectric Spectroscopy</topic><topic>Electric Capacitance</topic><topic>electrochemistry</topic><topic>Electrodes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Geobacter - physiology</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Nanostructures - chemistry</topic><topic>Other applications</topic><topic>Oxidation-Reduction</topic><topic>redox chemistry</topic><topic>supercapacitors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malvankar, Nikhil S.</creatorcontrib><creatorcontrib>Mester, Tünde</creatorcontrib><creatorcontrib>Tuominen, Mark T.</creatorcontrib><creatorcontrib>Lovley, Derek R.</creatorcontrib><creatorcontrib>Subsurface Biogeochemical Research (SBR)</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malvankar, Nikhil S.</au><au>Mester, Tünde</au><au>Tuominen, Mark T.</au><au>Lovley, Derek R.</au><aucorp>Subsurface Biogeochemical Research (SBR)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supercapacitors Based on c-Type Cytochromes Using Conductive Nanostructured Networks of Living Bacteria</atitle><jtitle>Chemphyschem</jtitle><addtitle>ChemPhysChem</addtitle><date>2012-02</date><risdate>2012</risdate><volume>13</volume><issue>2</issue><spage>463</spage><epage>468</epage><pages>463-468</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Supercapacitors have attracted interest in energy storage because they have the potential to complement or replace batteries. Here, we report that c‐type cytochromes, naturally immersed in a living, electrically conductive microbial biofilm, greatly enhance the device capacitance by over two orders of magnitude. We employ genetic engineering, protein unfolding and Nernstian modeling for in vivo demonstration of charge storage capacity of c‐type cytochromes and perform electrochemical impedance spectroscopy, cyclic voltammetry and charge–discharge cycling to confirm the pseudocapacitive, redox nature of biofilm capacitance. The biofilms also show low self‐discharge and good charge/discharge reversibility. The superior electrochemical performance of the biofilm is related to its high abundance of cytochromes, providing large electron storage capacity, its nanostructured network with metallic‐like conductivity, and its porous architecture with hydrous nature, offering prospects for future low cost and environmentally sustainable energy storage devices. Living supercapacitors: The capacitance of an electrode‐based device can be enhanced 100‐fold using the redox chemistry of c‐type cytochromes naturally embedded in an electrically conductive network of living bacteria (see picture). This study demonstrates the unique survival strategy by metal‐respiring bacteria when electron acceptors are temporarily unavailable and suggests a novel method for supercapacitive energy storage using self‐renewing microbes.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>22253215</pmid><doi>10.1002/cphc.201100865</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2012-02, Vol.13 (2), p.463-468
issn 1439-4235
1439-7641
language eng
recordid cdi_osti_scitechconnect_1154135
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects bacteria
Bacteria - chemistry
Bacteria - metabolism
Biofilms
Biological and medical sciences
Biotechnology
Cytochrome c Group - chemistry
Cytochrome c Group - metabolism
cytochromes
Dielectric Spectroscopy
Electric Capacitance
electrochemistry
Electrodes
Fundamental and applied biological sciences. Psychology
Geobacter - physiology
Industrial applications and implications. Economical aspects
Nanostructures - chemistry
Other applications
Oxidation-Reduction
redox chemistry
supercapacitors
title Supercapacitors Based on c-Type Cytochromes Using Conductive Nanostructured Networks of Living Bacteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A41%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supercapacitors%20Based%20on%20c-Type%20Cytochromes%20Using%20Conductive%20Nanostructured%20Networks%20of%20Living%20Bacteria&rft.jtitle=Chemphyschem&rft.au=Malvankar,%20Nikhil%20S.&rft.aucorp=Subsurface%20Biogeochemical%20Research%20(SBR)&rft.date=2012-02&rft.volume=13&rft.issue=2&rft.spage=463&rft.epage=468&rft.pages=463-468&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.201100865&rft_dat=%3Cproquest_osti_%3E918932333%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=918932333&rft_id=info:pmid/22253215&rfr_iscdi=true