Recent Advances in Dissecting Stress-Regulatory Crosstalk in Rice

Biotic and abiotic stresses impose a serious limitation on crop productivity worldwide. Prior or simultaneous exposure to one type of stress often affects the plant response to other stresses, indicating extensive overlap and cross-talk between stress-response signaling pathways. Systems biology app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular plant 2013-03, Vol.6 (2), p.250-260
Hauptverfasser: Sharma, Rita, De Vleesschauwer, David, Sharma, Manoj K., Ronald, Pamela C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 260
container_issue 2
container_start_page 250
container_title Molecular plant
container_volume 6
creator Sharma, Rita
De Vleesschauwer, David
Sharma, Manoj K.
Ronald, Pamela C.
description Biotic and abiotic stresses impose a serious limitation on crop productivity worldwide. Prior or simultaneous exposure to one type of stress often affects the plant response to other stresses, indicating extensive overlap and cross-talk between stress-response signaling pathways. Systems biology approaches that integrate large genomic and prot-eomic data sets have facilitated identification of candidate genes that govern this stress-regulatory crosstalk. Recently, we constructed a yeast two-hybrid map around three rice proteins that control the response to biotic and abiotic stresses, namely the immune receptor XA21, which confers resistance to the Gram-negative bacterium, Xanthomonas oryzae pv. oryzae; NH1, the rice ortholog of NPR1, a key regulator of systemic acquired resistance; and the ethylene-responsive transcription factor, SUBIA, which confers tolerance to submergence stress. These studies coupled with transcriptional profiling and co-expression analyses identified a suite of proteins that are positioned at the interface of biotic and abiotic stress responses, including mitogen-activated protein kinase 5 (OsMPK5), wall-associated kinase 25 (WAK25), sucrose non-fermenting-l-related protein kinase-1 (SnRK1), SUBIA binding protein 23 (SAB23), and several WRKY family tran- scription factors. Emerging evidence suggests that these genes orchestrate crosstalk between biotic and abiotic stresses through a variety of mechanisms, including regulation of cellular energy homeostasis and modification of synergistic and/or antagonistic interactions between the stress hormones salicylic acid, ethylene, jasmonic acid, and abscisic acid.
doi_str_mv 10.1093/mp/sss147
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1153349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>45619386</cqvip_id><els_id>S1674205214600885</els_id><sourcerecordid>1319168977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-76e838eb31dfab5056e5bbf2e8bd6afab74a63207d7d945cee09fada3c8e3cf53</originalsourceid><addsrcrecordid>eNptkctuFDEQRS0EIiGw4AdQkxVZNLHb7ddyNDylSEgDrC23XT0x9GPi8kTK3-NWD1ll5ZJ1dHXrFCFvGf3IqOHX4-EaEVmrnpFzpkRTGy3V8zJL1dYNFc0ZeYX4h1JJteQvyVnDG9Nopc_JZgceplxtwr2bPGAVp-pTRASf47SvfuYEiPUO9sfB5Tk9VNs0I2Y3_F3IXfTwmrzo3YDw5vRekN9fPv_afqtvfnz9vt3c1L7VPNdKguYaOs5C7zpBhQTRdX0DugvSlS_VOskbqoIKphUegJreBce9Bu57wS_I5Zo7Y44Wfczgb_08TaWqZUxw3poCfVihQ5rvjoDZjhE9DIObYD6iZZwZJrVRqqBXK-qXjRL09pDi6NKDZdQuWu14sKvWwr47xR67EcIj-d9jAfgKQDFwHyEtBaEIDTEt_cIcn4x9f6pwO0_7uyL8MbkVkhlervUPmgeRdw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1319168977</pqid></control><display><type>article</type><title>Recent Advances in Dissecting Stress-Regulatory Crosstalk in Rice</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Sharma, Rita ; De Vleesschauwer, David ; Sharma, Manoj K. ; Ronald, Pamela C.</creator><creatorcontrib>Sharma, Rita ; De Vleesschauwer, David ; Sharma, Manoj K. ; Ronald, Pamela C. ; Joint Bioenergy Institute (JBEI)</creatorcontrib><description>Biotic and abiotic stresses impose a serious limitation on crop productivity worldwide. Prior or simultaneous exposure to one type of stress often affects the plant response to other stresses, indicating extensive overlap and cross-talk between stress-response signaling pathways. Systems biology approaches that integrate large genomic and prot-eomic data sets have facilitated identification of candidate genes that govern this stress-regulatory crosstalk. Recently, we constructed a yeast two-hybrid map around three rice proteins that control the response to biotic and abiotic stresses, namely the immune receptor XA21, which confers resistance to the Gram-negative bacterium, Xanthomonas oryzae pv. oryzae; NH1, the rice ortholog of NPR1, a key regulator of systemic acquired resistance; and the ethylene-responsive transcription factor, SUBIA, which confers tolerance to submergence stress. These studies coupled with transcriptional profiling and co-expression analyses identified a suite of proteins that are positioned at the interface of biotic and abiotic stress responses, including mitogen-activated protein kinase 5 (OsMPK5), wall-associated kinase 25 (WAK25), sucrose non-fermenting-l-related protein kinase-1 (SnRK1), SUBIA binding protein 23 (SAB23), and several WRKY family tran- scription factors. Emerging evidence suggests that these genes orchestrate crosstalk between biotic and abiotic stresses through a variety of mechanisms, including regulation of cellular energy homeostasis and modification of synergistic and/or antagonistic interactions between the stress hormones salicylic acid, ethylene, jasmonic acid, and abscisic acid.</description><identifier>ISSN: 1674-2052</identifier><identifier>EISSN: 1752-9867</identifier><identifier>DOI: 10.1093/mp/sss147</identifier><identifier>PMID: 23292878</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>abiotic ; biotic ; crosstalk ; defense response ; hormone ; Oryza - cytology ; Oryza - physiology ; Signal Transduction ; stress ; Stress, Physiological ; Systems Biology ; 串扰 ; 应力响应 ; 有丝分裂原活化蛋白激酶 ; 水稻 ; 监管 ; 系统获得性抗性 ; 解剖 ; 非生物胁迫</subject><ispartof>Molecular plant, 2013-03, Vol.6 (2), p.250-260</ispartof><rights>2013 The Authors. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-76e838eb31dfab5056e5bbf2e8bd6afab74a63207d7d945cee09fada3c8e3cf53</citedby><cites>FETCH-LOGICAL-c483t-76e838eb31dfab5056e5bbf2e8bd6afab74a63207d7d945cee09fada3c8e3cf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/90143B/90143B.jpg</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23292878$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1153349$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Rita</creatorcontrib><creatorcontrib>De Vleesschauwer, David</creatorcontrib><creatorcontrib>Sharma, Manoj K.</creatorcontrib><creatorcontrib>Ronald, Pamela C.</creatorcontrib><creatorcontrib>Joint Bioenergy Institute (JBEI)</creatorcontrib><title>Recent Advances in Dissecting Stress-Regulatory Crosstalk in Rice</title><title>Molecular plant</title><addtitle>Molecular Plant</addtitle><description>Biotic and abiotic stresses impose a serious limitation on crop productivity worldwide. Prior or simultaneous exposure to one type of stress often affects the plant response to other stresses, indicating extensive overlap and cross-talk between stress-response signaling pathways. Systems biology approaches that integrate large genomic and prot-eomic data sets have facilitated identification of candidate genes that govern this stress-regulatory crosstalk. Recently, we constructed a yeast two-hybrid map around three rice proteins that control the response to biotic and abiotic stresses, namely the immune receptor XA21, which confers resistance to the Gram-negative bacterium, Xanthomonas oryzae pv. oryzae; NH1, the rice ortholog of NPR1, a key regulator of systemic acquired resistance; and the ethylene-responsive transcription factor, SUBIA, which confers tolerance to submergence stress. These studies coupled with transcriptional profiling and co-expression analyses identified a suite of proteins that are positioned at the interface of biotic and abiotic stress responses, including mitogen-activated protein kinase 5 (OsMPK5), wall-associated kinase 25 (WAK25), sucrose non-fermenting-l-related protein kinase-1 (SnRK1), SUBIA binding protein 23 (SAB23), and several WRKY family tran- scription factors. Emerging evidence suggests that these genes orchestrate crosstalk between biotic and abiotic stresses through a variety of mechanisms, including regulation of cellular energy homeostasis and modification of synergistic and/or antagonistic interactions between the stress hormones salicylic acid, ethylene, jasmonic acid, and abscisic acid.</description><subject>abiotic</subject><subject>biotic</subject><subject>crosstalk</subject><subject>defense response</subject><subject>hormone</subject><subject>Oryza - cytology</subject><subject>Oryza - physiology</subject><subject>Signal Transduction</subject><subject>stress</subject><subject>Stress, Physiological</subject><subject>Systems Biology</subject><subject>串扰</subject><subject>应力响应</subject><subject>有丝分裂原活化蛋白激酶</subject><subject>水稻</subject><subject>监管</subject><subject>系统获得性抗性</subject><subject>解剖</subject><subject>非生物胁迫</subject><issn>1674-2052</issn><issn>1752-9867</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkctuFDEQRS0EIiGw4AdQkxVZNLHb7ddyNDylSEgDrC23XT0x9GPi8kTK3-NWD1ll5ZJ1dHXrFCFvGf3IqOHX4-EaEVmrnpFzpkRTGy3V8zJL1dYNFc0ZeYX4h1JJteQvyVnDG9Nopc_JZgceplxtwr2bPGAVp-pTRASf47SvfuYEiPUO9sfB5Tk9VNs0I2Y3_F3IXfTwmrzo3YDw5vRekN9fPv_afqtvfnz9vt3c1L7VPNdKguYaOs5C7zpBhQTRdX0DugvSlS_VOskbqoIKphUegJreBce9Bu57wS_I5Zo7Y44Wfczgb_08TaWqZUxw3poCfVihQ5rvjoDZjhE9DIObYD6iZZwZJrVRqqBXK-qXjRL09pDi6NKDZdQuWu14sKvWwr47xR67EcIj-d9jAfgKQDFwHyEtBaEIDTEt_cIcn4x9f6pwO0_7uyL8MbkVkhlervUPmgeRdw</recordid><startdate>20130301</startdate><enddate>20130301</enddate><creator>Sharma, Rita</creator><creator>De Vleesschauwer, David</creator><creator>Sharma, Manoj K.</creator><creator>Ronald, Pamela C.</creator><general>Elsevier Inc</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>WU4</scope><scope>~WA</scope><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20130301</creationdate><title>Recent Advances in Dissecting Stress-Regulatory Crosstalk in Rice</title><author>Sharma, Rita ; De Vleesschauwer, David ; Sharma, Manoj K. ; Ronald, Pamela C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-76e838eb31dfab5056e5bbf2e8bd6afab74a63207d7d945cee09fada3c8e3cf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>abiotic</topic><topic>biotic</topic><topic>crosstalk</topic><topic>defense response</topic><topic>hormone</topic><topic>Oryza - cytology</topic><topic>Oryza - physiology</topic><topic>Signal Transduction</topic><topic>stress</topic><topic>Stress, Physiological</topic><topic>Systems Biology</topic><topic>串扰</topic><topic>应力响应</topic><topic>有丝分裂原活化蛋白激酶</topic><topic>水稻</topic><topic>监管</topic><topic>系统获得性抗性</topic><topic>解剖</topic><topic>非生物胁迫</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Rita</creatorcontrib><creatorcontrib>De Vleesschauwer, David</creatorcontrib><creatorcontrib>Sharma, Manoj K.</creatorcontrib><creatorcontrib>Ronald, Pamela C.</creatorcontrib><creatorcontrib>Joint Bioenergy Institute (JBEI)</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库-自然科学-生物科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Molecular plant</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Rita</au><au>De Vleesschauwer, David</au><au>Sharma, Manoj K.</au><au>Ronald, Pamela C.</au><aucorp>Joint Bioenergy Institute (JBEI)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent Advances in Dissecting Stress-Regulatory Crosstalk in Rice</atitle><jtitle>Molecular plant</jtitle><addtitle>Molecular Plant</addtitle><date>2013-03-01</date><risdate>2013</risdate><volume>6</volume><issue>2</issue><spage>250</spage><epage>260</epage><pages>250-260</pages><issn>1674-2052</issn><eissn>1752-9867</eissn><abstract>Biotic and abiotic stresses impose a serious limitation on crop productivity worldwide. Prior or simultaneous exposure to one type of stress often affects the plant response to other stresses, indicating extensive overlap and cross-talk between stress-response signaling pathways. Systems biology approaches that integrate large genomic and prot-eomic data sets have facilitated identification of candidate genes that govern this stress-regulatory crosstalk. Recently, we constructed a yeast two-hybrid map around three rice proteins that control the response to biotic and abiotic stresses, namely the immune receptor XA21, which confers resistance to the Gram-negative bacterium, Xanthomonas oryzae pv. oryzae; NH1, the rice ortholog of NPR1, a key regulator of systemic acquired resistance; and the ethylene-responsive transcription factor, SUBIA, which confers tolerance to submergence stress. These studies coupled with transcriptional profiling and co-expression analyses identified a suite of proteins that are positioned at the interface of biotic and abiotic stress responses, including mitogen-activated protein kinase 5 (OsMPK5), wall-associated kinase 25 (WAK25), sucrose non-fermenting-l-related protein kinase-1 (SnRK1), SUBIA binding protein 23 (SAB23), and several WRKY family tran- scription factors. Emerging evidence suggests that these genes orchestrate crosstalk between biotic and abiotic stresses through a variety of mechanisms, including regulation of cellular energy homeostasis and modification of synergistic and/or antagonistic interactions between the stress hormones salicylic acid, ethylene, jasmonic acid, and abscisic acid.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>23292878</pmid><doi>10.1093/mp/sss147</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1674-2052
ispartof Molecular plant, 2013-03, Vol.6 (2), p.250-260
issn 1674-2052
1752-9867
language eng
recordid cdi_osti_scitechconnect_1153349
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects abiotic
biotic
crosstalk
defense response
hormone
Oryza - cytology
Oryza - physiology
Signal Transduction
stress
Stress, Physiological
Systems Biology
串扰
应力响应
有丝分裂原活化蛋白激酶
水稻
监管
系统获得性抗性
解剖
非生物胁迫
title Recent Advances in Dissecting Stress-Regulatory Crosstalk in Rice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A41%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20Advances%20in%20Dissecting%20Stress-Regulatory%20Crosstalk%20in%20Rice&rft.jtitle=Molecular%20plant&rft.au=Sharma,%20Rita&rft.aucorp=Joint%20Bioenergy%20Institute%20(JBEI)&rft.date=2013-03-01&rft.volume=6&rft.issue=2&rft.spage=250&rft.epage=260&rft.pages=250-260&rft.issn=1674-2052&rft.eissn=1752-9867&rft_id=info:doi/10.1093/mp/sss147&rft_dat=%3Cproquest_osti_%3E1319168977%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1319168977&rft_id=info:pmid/23292878&rft_cqvip_id=45619386&rft_els_id=S1674205214600885&rfr_iscdi=true