Environmental Stresses of Field Growth Allow Cinnamyl Alcohol Dehydrogenase-Deficient Nicotiana attenuata Plants to Compensate for their Structural Deficiencies

The organized lignocellulosic assemblies of cell walls provide the structural integrity required for the large statures of terrestrial plants. Silencing two CINNAMYL ALCOHOL DEHYDROGENASE (CAD) genes in Nicotiana attenuata produced plants (ir-CAD) with thin, red-pigmented stems, low CAD and sinapyl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2012-08, Vol.159 (4), p.1545-1570
Hauptverfasser: Kaur, Harleen, Shaker, Kamel, Heinzel, Nicolas, Ralph, John, Gális, Ivan, Baldwin, Ian T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1570
container_issue 4
container_start_page 1545
container_title Plant physiology (Bethesda)
container_volume 159
creator Kaur, Harleen
Shaker, Kamel
Heinzel, Nicolas
Ralph, John
Gális, Ivan
Baldwin, Ian T.
description The organized lignocellulosic assemblies of cell walls provide the structural integrity required for the large statures of terrestrial plants. Silencing two CINNAMYL ALCOHOL DEHYDROGENASE (CAD) genes in Nicotiana attenuata produced plants (ir-CAD) with thin, red-pigmented stems, low CAD and sinapyl alcohol dehydrogenase activity, low lignin contents, and rubbery, structurally unstable stems when grown in the glasshouse (GH). However, when planted into their native desert habitat, ir-CAD plants produced robust stems that survived wind storms as well as the wild-type plants. Despite efficient silencing of NaCAD transcripts and enzymatic activity, field-grown ir-CAD plants had delayed and restricted spread of red stem pigmentation, a color change reflecting blocked lignification by CAD silencing, and attained wild-type-comparable total lignin contents. The rubbery GH phenotype was largely restored when field-grown ir-CAD plants were protected from wind, herbivore attack, and ultraviolet B exposure and grown in restricted rooting volumes; conversely, it was lost when ir-CAD plants were experimentally exposed to wind, ultraviolet B, and grown in large pots in growth chambers. Transcript and liquid chromatography-electrospray ionization-time-of-flight analysis revealed that these environmental stresses enhanced the accumulation of various phenylpropanoids in stems of field-grown plants; gas chromatography-mass spectrometry and nuclear magnetic resonance analysis revealed that the lignin of field-grown ir-CAD plants had GH-grown comparable levels of sinapaldehyde and syringaldehyde cross-linked into their lignins. Additionally, field-grown ir-CAD plants had short, thick stems with normal xylem element traits, which collectively enabled field-grown ir-CAD plants to compensate for the structural deficiencies associated with CAD silencing. Environmental stresses play an essential role in regulating lignin biosynthesis in lignin-deficient plants.
doi_str_mv 10.1104/pp.112.196717
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_osti_scitechconnect_1152994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23274738</jstor_id><sourcerecordid>23274738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-ea1877adc10ef2aee5962b81efddd8c931a56f6223f2fc16215184ce54c0d90a3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEokvhyBFkISFxSbGdOIkvSNX2A6QKkICzNXXGjausndpOq_03_FS8ZGnhxMEaj-bRO59F8ZLRI8Zo_X6asuVHTDYtax8VKyYqXnJRd4-LFaX5T7tOHhTPYrymlLKK1U-LA86bWtBGroqfp-7WBu826BKM5FsKGCNG4g05szj25Dz4uzSQ43H0d2RtnYPNdsyu9oMfyQkO2z74K3QQsTxBY7XNSuSz1T5ZcEAgJXQzJCBfR3ApkuTJ2m8mdBESEuMDSQPasEs96zQH2KkuOvnF58UTA2PEF3t7WPw4O_2-_lhefDn_tD6-KHUtZSoRWNe20GtG0XBAFLLhlx1D0_d9p2XFQDSm4bwy3GjWcCZYV2sUtaa9pFAdFh8W3Wm-3GCvcxe5FDUFu4GwVR6s-jfi7KCu_K2qai7y9LPAm0XAx2RV1DahHrR3DnVSjAkuZZ2hd_sswd_MGJPa2KhxzKNBP0fFf--ISsr_izJasV0frMtouaA6-BgDmvuyGVW7K1HTlC1Xy5Vk_vXfvd7Tf84iA2_3AEQNowmQdxEfuIYL2XUic68W7jomHx7iFW_rtuqqX1Ar0rs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031162118</pqid></control><display><type>article</type><title>Environmental Stresses of Field Growth Allow Cinnamyl Alcohol Dehydrogenase-Deficient Nicotiana attenuata Plants to Compensate for their Structural Deficiencies</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kaur, Harleen ; Shaker, Kamel ; Heinzel, Nicolas ; Ralph, John ; Gális, Ivan ; Baldwin, Ian T.</creator><creatorcontrib>Kaur, Harleen ; Shaker, Kamel ; Heinzel, Nicolas ; Ralph, John ; Gális, Ivan ; Baldwin, Ian T. ; Great Lakes Bioenergy Research Center (GLBRC)</creatorcontrib><description>The organized lignocellulosic assemblies of cell walls provide the structural integrity required for the large statures of terrestrial plants. Silencing two CINNAMYL ALCOHOL DEHYDROGENASE (CAD) genes in Nicotiana attenuata produced plants (ir-CAD) with thin, red-pigmented stems, low CAD and sinapyl alcohol dehydrogenase activity, low lignin contents, and rubbery, structurally unstable stems when grown in the glasshouse (GH). However, when planted into their native desert habitat, ir-CAD plants produced robust stems that survived wind storms as well as the wild-type plants. Despite efficient silencing of NaCAD transcripts and enzymatic activity, field-grown ir-CAD plants had delayed and restricted spread of red stem pigmentation, a color change reflecting blocked lignification by CAD silencing, and attained wild-type-comparable total lignin contents. The rubbery GH phenotype was largely restored when field-grown ir-CAD plants were protected from wind, herbivore attack, and ultraviolet B exposure and grown in restricted rooting volumes; conversely, it was lost when ir-CAD plants were experimentally exposed to wind, ultraviolet B, and grown in large pots in growth chambers. Transcript and liquid chromatography-electrospray ionization-time-of-flight analysis revealed that these environmental stresses enhanced the accumulation of various phenylpropanoids in stems of field-grown plants; gas chromatography-mass spectrometry and nuclear magnetic resonance analysis revealed that the lignin of field-grown ir-CAD plants had GH-grown comparable levels of sinapaldehyde and syringaldehyde cross-linked into their lignins. Additionally, field-grown ir-CAD plants had short, thick stems with normal xylem element traits, which collectively enabled field-grown ir-CAD plants to compensate for the structural deficiencies associated with CAD silencing. Environmental stresses play an essential role in regulating lignin biosynthesis in lignin-deficient plants.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.112.196717</identifier><identifier>PMID: 22645069</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>alcohol dehydrogenase ; Alcohol Oxidoreductases - deficiency ; Alcohol Oxidoreductases - genetics ; Alcohol Oxidoreductases - metabolism ; Alcohols ; Biological and medical sciences ; biosynthesis ; cell walls ; cinnamyl alcohol dehydrogenase ; color ; crosslinking ; Environment ; ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS ; enzyme activity ; Fundamental and applied biological sciences. Psychology ; gas chromatography-mass spectrometry ; Gene Expression Regulation, Plant ; Gene Silencing ; Genes ; Genes, Plant - genetics ; greenhouses ; growth chambers ; habitats ; herbivores ; Lignification ; Lignin ; Lignin - metabolism ; lignocellulose ; Magnetic Resonance Spectroscopy ; Metabolome - genetics ; Models, Biological ; Multigene Family - genetics ; Nicotiana - anatomy &amp; histology ; Nicotiana - enzymology ; Nicotiana - genetics ; Nicotiana - growth &amp; development ; Nicotiana attenuata ; nuclear magnetic resonance spectroscopy ; Phenotype ; Phenotypes ; Phenylalanine Ammonia-Lyase - genetics ; Phenylalanine Ammonia-Lyase - metabolism ; phenylpropanoids ; Phylogeny ; pigmentation ; Pigmentation - physiology ; Plant growth ; Plant physiology and development ; Plant Stems - anatomy &amp; histology ; Plant Stems - growth &amp; development ; planting ; Plants ; plants (botany) ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; rooting ; sinapyl alcohol ; Solubility ; Stems ; storms ; Stress, Physiological - genetics ; Transcription, Genetic ; Transcriptional regulatory elements ; ultraviolet radiation ; Utah ; wind ; Xylem</subject><ispartof>Plant physiology (Bethesda), 2012-08, Vol.159 (4), p.1545-1570</ispartof><rights>2012 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><rights>2012 American Society of Plant Biologists. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-ea1877adc10ef2aee5962b81efddd8c931a56f6223f2fc16215184ce54c0d90a3</citedby><cites>FETCH-LOGICAL-c499t-ea1877adc10ef2aee5962b81efddd8c931a56f6223f2fc16215184ce54c0d90a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23274738$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23274738$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27903,27904,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26259885$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22645069$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1152994$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaur, Harleen</creatorcontrib><creatorcontrib>Shaker, Kamel</creatorcontrib><creatorcontrib>Heinzel, Nicolas</creatorcontrib><creatorcontrib>Ralph, John</creatorcontrib><creatorcontrib>Gális, Ivan</creatorcontrib><creatorcontrib>Baldwin, Ian T.</creatorcontrib><creatorcontrib>Great Lakes Bioenergy Research Center (GLBRC)</creatorcontrib><title>Environmental Stresses of Field Growth Allow Cinnamyl Alcohol Dehydrogenase-Deficient Nicotiana attenuata Plants to Compensate for their Structural Deficiencies</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>The organized lignocellulosic assemblies of cell walls provide the structural integrity required for the large statures of terrestrial plants. Silencing two CINNAMYL ALCOHOL DEHYDROGENASE (CAD) genes in Nicotiana attenuata produced plants (ir-CAD) with thin, red-pigmented stems, low CAD and sinapyl alcohol dehydrogenase activity, low lignin contents, and rubbery, structurally unstable stems when grown in the glasshouse (GH). However, when planted into their native desert habitat, ir-CAD plants produced robust stems that survived wind storms as well as the wild-type plants. Despite efficient silencing of NaCAD transcripts and enzymatic activity, field-grown ir-CAD plants had delayed and restricted spread of red stem pigmentation, a color change reflecting blocked lignification by CAD silencing, and attained wild-type-comparable total lignin contents. The rubbery GH phenotype was largely restored when field-grown ir-CAD plants were protected from wind, herbivore attack, and ultraviolet B exposure and grown in restricted rooting volumes; conversely, it was lost when ir-CAD plants were experimentally exposed to wind, ultraviolet B, and grown in large pots in growth chambers. Transcript and liquid chromatography-electrospray ionization-time-of-flight analysis revealed that these environmental stresses enhanced the accumulation of various phenylpropanoids in stems of field-grown plants; gas chromatography-mass spectrometry and nuclear magnetic resonance analysis revealed that the lignin of field-grown ir-CAD plants had GH-grown comparable levels of sinapaldehyde and syringaldehyde cross-linked into their lignins. Additionally, field-grown ir-CAD plants had short, thick stems with normal xylem element traits, which collectively enabled field-grown ir-CAD plants to compensate for the structural deficiencies associated with CAD silencing. Environmental stresses play an essential role in regulating lignin biosynthesis in lignin-deficient plants.</description><subject>alcohol dehydrogenase</subject><subject>Alcohol Oxidoreductases - deficiency</subject><subject>Alcohol Oxidoreductases - genetics</subject><subject>Alcohol Oxidoreductases - metabolism</subject><subject>Alcohols</subject><subject>Biological and medical sciences</subject><subject>biosynthesis</subject><subject>cell walls</subject><subject>cinnamyl alcohol dehydrogenase</subject><subject>color</subject><subject>crosslinking</subject><subject>Environment</subject><subject>ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS</subject><subject>enzyme activity</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gas chromatography-mass spectrometry</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene Silencing</subject><subject>Genes</subject><subject>Genes, Plant - genetics</subject><subject>greenhouses</subject><subject>growth chambers</subject><subject>habitats</subject><subject>herbivores</subject><subject>Lignification</subject><subject>Lignin</subject><subject>Lignin - metabolism</subject><subject>lignocellulose</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Metabolome - genetics</subject><subject>Models, Biological</subject><subject>Multigene Family - genetics</subject><subject>Nicotiana - anatomy &amp; histology</subject><subject>Nicotiana - enzymology</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - growth &amp; development</subject><subject>Nicotiana attenuata</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phenylalanine Ammonia-Lyase - genetics</subject><subject>Phenylalanine Ammonia-Lyase - metabolism</subject><subject>phenylpropanoids</subject><subject>Phylogeny</subject><subject>pigmentation</subject><subject>Pigmentation - physiology</subject><subject>Plant growth</subject><subject>Plant physiology and development</subject><subject>Plant Stems - anatomy &amp; histology</subject><subject>Plant Stems - growth &amp; development</subject><subject>planting</subject><subject>Plants</subject><subject>plants (botany)</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>rooting</subject><subject>sinapyl alcohol</subject><subject>Solubility</subject><subject>Stems</subject><subject>storms</subject><subject>Stress, Physiological - genetics</subject><subject>Transcription, Genetic</subject><subject>Transcriptional regulatory elements</subject><subject>ultraviolet radiation</subject><subject>Utah</subject><subject>wind</subject><subject>Xylem</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1v1DAQhiMEokvhyBFkISFxSbGdOIkvSNX2A6QKkICzNXXGjausndpOq_03_FS8ZGnhxMEaj-bRO59F8ZLRI8Zo_X6asuVHTDYtax8VKyYqXnJRd4-LFaX5T7tOHhTPYrymlLKK1U-LA86bWtBGroqfp-7WBu826BKM5FsKGCNG4g05szj25Dz4uzSQ43H0d2RtnYPNdsyu9oMfyQkO2z74K3QQsTxBY7XNSuSz1T5ZcEAgJXQzJCBfR3ApkuTJ2m8mdBESEuMDSQPasEs96zQH2KkuOvnF58UTA2PEF3t7WPw4O_2-_lhefDn_tD6-KHUtZSoRWNe20GtG0XBAFLLhlx1D0_d9p2XFQDSm4bwy3GjWcCZYV2sUtaa9pFAdFh8W3Wm-3GCvcxe5FDUFu4GwVR6s-jfi7KCu_K2qai7y9LPAm0XAx2RV1DahHrR3DnVSjAkuZZ2hd_sswd_MGJPa2KhxzKNBP0fFf--ISsr_izJasV0frMtouaA6-BgDmvuyGVW7K1HTlC1Xy5Vk_vXfvd7Tf84iA2_3AEQNowmQdxEfuIYL2XUic68W7jomHx7iFW_rtuqqX1Ar0rs</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Kaur, Harleen</creator><creator>Shaker, Kamel</creator><creator>Heinzel, Nicolas</creator><creator>Ralph, John</creator><creator>Gális, Ivan</creator><creator>Baldwin, Ian T.</creator><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20120801</creationdate><title>Environmental Stresses of Field Growth Allow Cinnamyl Alcohol Dehydrogenase-Deficient Nicotiana attenuata Plants to Compensate for their Structural Deficiencies</title><author>Kaur, Harleen ; Shaker, Kamel ; Heinzel, Nicolas ; Ralph, John ; Gális, Ivan ; Baldwin, Ian T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-ea1877adc10ef2aee5962b81efddd8c931a56f6223f2fc16215184ce54c0d90a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>alcohol dehydrogenase</topic><topic>Alcohol Oxidoreductases - deficiency</topic><topic>Alcohol Oxidoreductases - genetics</topic><topic>Alcohol Oxidoreductases - metabolism</topic><topic>Alcohols</topic><topic>Biological and medical sciences</topic><topic>biosynthesis</topic><topic>cell walls</topic><topic>cinnamyl alcohol dehydrogenase</topic><topic>color</topic><topic>crosslinking</topic><topic>Environment</topic><topic>ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS</topic><topic>enzyme activity</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gas chromatography-mass spectrometry</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene Silencing</topic><topic>Genes</topic><topic>Genes, Plant - genetics</topic><topic>greenhouses</topic><topic>growth chambers</topic><topic>habitats</topic><topic>herbivores</topic><topic>Lignification</topic><topic>Lignin</topic><topic>Lignin - metabolism</topic><topic>lignocellulose</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Metabolome - genetics</topic><topic>Models, Biological</topic><topic>Multigene Family - genetics</topic><topic>Nicotiana - anatomy &amp; histology</topic><topic>Nicotiana - enzymology</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - growth &amp; development</topic><topic>Nicotiana attenuata</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phenylalanine Ammonia-Lyase - genetics</topic><topic>Phenylalanine Ammonia-Lyase - metabolism</topic><topic>phenylpropanoids</topic><topic>Phylogeny</topic><topic>pigmentation</topic><topic>Pigmentation - physiology</topic><topic>Plant growth</topic><topic>Plant physiology and development</topic><topic>Plant Stems - anatomy &amp; histology</topic><topic>Plant Stems - growth &amp; development</topic><topic>planting</topic><topic>Plants</topic><topic>plants (botany)</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>rooting</topic><topic>sinapyl alcohol</topic><topic>Solubility</topic><topic>Stems</topic><topic>storms</topic><topic>Stress, Physiological - genetics</topic><topic>Transcription, Genetic</topic><topic>Transcriptional regulatory elements</topic><topic>ultraviolet radiation</topic><topic>Utah</topic><topic>wind</topic><topic>Xylem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaur, Harleen</creatorcontrib><creatorcontrib>Shaker, Kamel</creatorcontrib><creatorcontrib>Heinzel, Nicolas</creatorcontrib><creatorcontrib>Ralph, John</creatorcontrib><creatorcontrib>Gális, Ivan</creatorcontrib><creatorcontrib>Baldwin, Ian T.</creatorcontrib><creatorcontrib>Great Lakes Bioenergy Research Center (GLBRC)</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaur, Harleen</au><au>Shaker, Kamel</au><au>Heinzel, Nicolas</au><au>Ralph, John</au><au>Gális, Ivan</au><au>Baldwin, Ian T.</au><aucorp>Great Lakes Bioenergy Research Center (GLBRC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Environmental Stresses of Field Growth Allow Cinnamyl Alcohol Dehydrogenase-Deficient Nicotiana attenuata Plants to Compensate for their Structural Deficiencies</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>159</volume><issue>4</issue><spage>1545</spage><epage>1570</epage><pages>1545-1570</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>The organized lignocellulosic assemblies of cell walls provide the structural integrity required for the large statures of terrestrial plants. Silencing two CINNAMYL ALCOHOL DEHYDROGENASE (CAD) genes in Nicotiana attenuata produced plants (ir-CAD) with thin, red-pigmented stems, low CAD and sinapyl alcohol dehydrogenase activity, low lignin contents, and rubbery, structurally unstable stems when grown in the glasshouse (GH). However, when planted into their native desert habitat, ir-CAD plants produced robust stems that survived wind storms as well as the wild-type plants. Despite efficient silencing of NaCAD transcripts and enzymatic activity, field-grown ir-CAD plants had delayed and restricted spread of red stem pigmentation, a color change reflecting blocked lignification by CAD silencing, and attained wild-type-comparable total lignin contents. The rubbery GH phenotype was largely restored when field-grown ir-CAD plants were protected from wind, herbivore attack, and ultraviolet B exposure and grown in restricted rooting volumes; conversely, it was lost when ir-CAD plants were experimentally exposed to wind, ultraviolet B, and grown in large pots in growth chambers. Transcript and liquid chromatography-electrospray ionization-time-of-flight analysis revealed that these environmental stresses enhanced the accumulation of various phenylpropanoids in stems of field-grown plants; gas chromatography-mass spectrometry and nuclear magnetic resonance analysis revealed that the lignin of field-grown ir-CAD plants had GH-grown comparable levels of sinapaldehyde and syringaldehyde cross-linked into their lignins. Additionally, field-grown ir-CAD plants had short, thick stems with normal xylem element traits, which collectively enabled field-grown ir-CAD plants to compensate for the structural deficiencies associated with CAD silencing. Environmental stresses play an essential role in regulating lignin biosynthesis in lignin-deficient plants.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>22645069</pmid><doi>10.1104/pp.112.196717</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2012-08, Vol.159 (4), p.1545-1570
issn 0032-0889
1532-2548
1532-2548
language eng
recordid cdi_osti_scitechconnect_1152994
source MEDLINE; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects alcohol dehydrogenase
Alcohol Oxidoreductases - deficiency
Alcohol Oxidoreductases - genetics
Alcohol Oxidoreductases - metabolism
Alcohols
Biological and medical sciences
biosynthesis
cell walls
cinnamyl alcohol dehydrogenase
color
crosslinking
Environment
ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS
enzyme activity
Fundamental and applied biological sciences. Psychology
gas chromatography-mass spectrometry
Gene Expression Regulation, Plant
Gene Silencing
Genes
Genes, Plant - genetics
greenhouses
growth chambers
habitats
herbivores
Lignification
Lignin
Lignin - metabolism
lignocellulose
Magnetic Resonance Spectroscopy
Metabolome - genetics
Models, Biological
Multigene Family - genetics
Nicotiana - anatomy & histology
Nicotiana - enzymology
Nicotiana - genetics
Nicotiana - growth & development
Nicotiana attenuata
nuclear magnetic resonance spectroscopy
Phenotype
Phenotypes
Phenylalanine Ammonia-Lyase - genetics
Phenylalanine Ammonia-Lyase - metabolism
phenylpropanoids
Phylogeny
pigmentation
Pigmentation - physiology
Plant growth
Plant physiology and development
Plant Stems - anatomy & histology
Plant Stems - growth & development
planting
Plants
plants (botany)
RNA, Messenger - genetics
RNA, Messenger - metabolism
rooting
sinapyl alcohol
Solubility
Stems
storms
Stress, Physiological - genetics
Transcription, Genetic
Transcriptional regulatory elements
ultraviolet radiation
Utah
wind
Xylem
title Environmental Stresses of Field Growth Allow Cinnamyl Alcohol Dehydrogenase-Deficient Nicotiana attenuata Plants to Compensate for their Structural Deficiencies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T09%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Environmental%20Stresses%20of%20Field%20Growth%20Allow%20Cinnamyl%20Alcohol%20Dehydrogenase-Deficient%20Nicotiana%20attenuata%20Plants%20to%20Compensate%20for%20their%20Structural%20Deficiencies&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Kaur,%20Harleen&rft.aucorp=Great%20Lakes%20Bioenergy%20Research%20Center%20(GLBRC)&rft.date=2012-08-01&rft.volume=159&rft.issue=4&rft.spage=1545&rft.epage=1570&rft.pages=1545-1570&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.112.196717&rft_dat=%3Cjstor_pubme%3E23274738%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1031162118&rft_id=info:pmid/22645069&rft_jstor_id=23274738&rfr_iscdi=true