Environmental Stresses of Field Growth Allow Cinnamyl Alcohol Dehydrogenase-Deficient Nicotiana attenuata Plants to Compensate for their Structural Deficiencies
The organized lignocellulosic assemblies of cell walls provide the structural integrity required for the large statures of terrestrial plants. Silencing two CINNAMYL ALCOHOL DEHYDROGENASE (CAD) genes in Nicotiana attenuata produced plants (ir-CAD) with thin, red-pigmented stems, low CAD and sinapyl...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2012-08, Vol.159 (4), p.1545-1570 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1570 |
---|---|
container_issue | 4 |
container_start_page | 1545 |
container_title | Plant physiology (Bethesda) |
container_volume | 159 |
creator | Kaur, Harleen Shaker, Kamel Heinzel, Nicolas Ralph, John Gális, Ivan Baldwin, Ian T. |
description | The organized lignocellulosic assemblies of cell walls provide the structural integrity required for the large statures of terrestrial plants. Silencing two CINNAMYL ALCOHOL DEHYDROGENASE (CAD) genes in Nicotiana attenuata produced plants (ir-CAD) with thin, red-pigmented stems, low CAD and sinapyl alcohol dehydrogenase activity, low lignin contents, and rubbery, structurally unstable stems when grown in the glasshouse (GH). However, when planted into their native desert habitat, ir-CAD plants produced robust stems that survived wind storms as well as the wild-type plants. Despite efficient silencing of NaCAD transcripts and enzymatic activity, field-grown ir-CAD plants had delayed and restricted spread of red stem pigmentation, a color change reflecting blocked lignification by CAD silencing, and attained wild-type-comparable total lignin contents. The rubbery GH phenotype was largely restored when field-grown ir-CAD plants were protected from wind, herbivore attack, and ultraviolet B exposure and grown in restricted rooting volumes; conversely, it was lost when ir-CAD plants were experimentally exposed to wind, ultraviolet B, and grown in large pots in growth chambers. Transcript and liquid chromatography-electrospray ionization-time-of-flight analysis revealed that these environmental stresses enhanced the accumulation of various phenylpropanoids in stems of field-grown plants; gas chromatography-mass spectrometry and nuclear magnetic resonance analysis revealed that the lignin of field-grown ir-CAD plants had GH-grown comparable levels of sinapaldehyde and syringaldehyde cross-linked into their lignins. Additionally, field-grown ir-CAD plants had short, thick stems with normal xylem element traits, which collectively enabled field-grown ir-CAD plants to compensate for the structural deficiencies associated with CAD silencing. Environmental stresses play an essential role in regulating lignin biosynthesis in lignin-deficient plants. |
doi_str_mv | 10.1104/pp.112.196717 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_osti_scitechconnect_1152994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23274738</jstor_id><sourcerecordid>23274738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-ea1877adc10ef2aee5962b81efddd8c931a56f6223f2fc16215184ce54c0d90a3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEokvhyBFkISFxSbGdOIkvSNX2A6QKkICzNXXGjausndpOq_03_FS8ZGnhxMEaj-bRO59F8ZLRI8Zo_X6asuVHTDYtax8VKyYqXnJRd4-LFaX5T7tOHhTPYrymlLKK1U-LA86bWtBGroqfp-7WBu826BKM5FsKGCNG4g05szj25Dz4uzSQ43H0d2RtnYPNdsyu9oMfyQkO2z74K3QQsTxBY7XNSuSz1T5ZcEAgJXQzJCBfR3ApkuTJ2m8mdBESEuMDSQPasEs96zQH2KkuOvnF58UTA2PEF3t7WPw4O_2-_lhefDn_tD6-KHUtZSoRWNe20GtG0XBAFLLhlx1D0_d9p2XFQDSm4bwy3GjWcCZYV2sUtaa9pFAdFh8W3Wm-3GCvcxe5FDUFu4GwVR6s-jfi7KCu_K2qai7y9LPAm0XAx2RV1DahHrR3DnVSjAkuZZ2hd_sswd_MGJPa2KhxzKNBP0fFf--ISsr_izJasV0frMtouaA6-BgDmvuyGVW7K1HTlC1Xy5Vk_vXfvd7Tf84iA2_3AEQNowmQdxEfuIYL2XUic68W7jomHx7iFW_rtuqqX1Ar0rs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1031162118</pqid></control><display><type>article</type><title>Environmental Stresses of Field Growth Allow Cinnamyl Alcohol Dehydrogenase-Deficient Nicotiana attenuata Plants to Compensate for their Structural Deficiencies</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kaur, Harleen ; Shaker, Kamel ; Heinzel, Nicolas ; Ralph, John ; Gális, Ivan ; Baldwin, Ian T.</creator><creatorcontrib>Kaur, Harleen ; Shaker, Kamel ; Heinzel, Nicolas ; Ralph, John ; Gális, Ivan ; Baldwin, Ian T. ; Great Lakes Bioenergy Research Center (GLBRC)</creatorcontrib><description>The organized lignocellulosic assemblies of cell walls provide the structural integrity required for the large statures of terrestrial plants. Silencing two CINNAMYL ALCOHOL DEHYDROGENASE (CAD) genes in Nicotiana attenuata produced plants (ir-CAD) with thin, red-pigmented stems, low CAD and sinapyl alcohol dehydrogenase activity, low lignin contents, and rubbery, structurally unstable stems when grown in the glasshouse (GH). However, when planted into their native desert habitat, ir-CAD plants produced robust stems that survived wind storms as well as the wild-type plants. Despite efficient silencing of NaCAD transcripts and enzymatic activity, field-grown ir-CAD plants had delayed and restricted spread of red stem pigmentation, a color change reflecting blocked lignification by CAD silencing, and attained wild-type-comparable total lignin contents. The rubbery GH phenotype was largely restored when field-grown ir-CAD plants were protected from wind, herbivore attack, and ultraviolet B exposure and grown in restricted rooting volumes; conversely, it was lost when ir-CAD plants were experimentally exposed to wind, ultraviolet B, and grown in large pots in growth chambers. Transcript and liquid chromatography-electrospray ionization-time-of-flight analysis revealed that these environmental stresses enhanced the accumulation of various phenylpropanoids in stems of field-grown plants; gas chromatography-mass spectrometry and nuclear magnetic resonance analysis revealed that the lignin of field-grown ir-CAD plants had GH-grown comparable levels of sinapaldehyde and syringaldehyde cross-linked into their lignins. Additionally, field-grown ir-CAD plants had short, thick stems with normal xylem element traits, which collectively enabled field-grown ir-CAD plants to compensate for the structural deficiencies associated with CAD silencing. Environmental stresses play an essential role in regulating lignin biosynthesis in lignin-deficient plants.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.112.196717</identifier><identifier>PMID: 22645069</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>alcohol dehydrogenase ; Alcohol Oxidoreductases - deficiency ; Alcohol Oxidoreductases - genetics ; Alcohol Oxidoreductases - metabolism ; Alcohols ; Biological and medical sciences ; biosynthesis ; cell walls ; cinnamyl alcohol dehydrogenase ; color ; crosslinking ; Environment ; ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS ; enzyme activity ; Fundamental and applied biological sciences. Psychology ; gas chromatography-mass spectrometry ; Gene Expression Regulation, Plant ; Gene Silencing ; Genes ; Genes, Plant - genetics ; greenhouses ; growth chambers ; habitats ; herbivores ; Lignification ; Lignin ; Lignin - metabolism ; lignocellulose ; Magnetic Resonance Spectroscopy ; Metabolome - genetics ; Models, Biological ; Multigene Family - genetics ; Nicotiana - anatomy & histology ; Nicotiana - enzymology ; Nicotiana - genetics ; Nicotiana - growth & development ; Nicotiana attenuata ; nuclear magnetic resonance spectroscopy ; Phenotype ; Phenotypes ; Phenylalanine Ammonia-Lyase - genetics ; Phenylalanine Ammonia-Lyase - metabolism ; phenylpropanoids ; Phylogeny ; pigmentation ; Pigmentation - physiology ; Plant growth ; Plant physiology and development ; Plant Stems - anatomy & histology ; Plant Stems - growth & development ; planting ; Plants ; plants (botany) ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; rooting ; sinapyl alcohol ; Solubility ; Stems ; storms ; Stress, Physiological - genetics ; Transcription, Genetic ; Transcriptional regulatory elements ; ultraviolet radiation ; Utah ; wind ; Xylem</subject><ispartof>Plant physiology (Bethesda), 2012-08, Vol.159 (4), p.1545-1570</ispartof><rights>2012 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><rights>2012 American Society of Plant Biologists. All rights reserved. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-ea1877adc10ef2aee5962b81efddd8c931a56f6223f2fc16215184ce54c0d90a3</citedby><cites>FETCH-LOGICAL-c499t-ea1877adc10ef2aee5962b81efddd8c931a56f6223f2fc16215184ce54c0d90a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23274738$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23274738$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27903,27904,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26259885$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22645069$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1152994$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaur, Harleen</creatorcontrib><creatorcontrib>Shaker, Kamel</creatorcontrib><creatorcontrib>Heinzel, Nicolas</creatorcontrib><creatorcontrib>Ralph, John</creatorcontrib><creatorcontrib>Gális, Ivan</creatorcontrib><creatorcontrib>Baldwin, Ian T.</creatorcontrib><creatorcontrib>Great Lakes Bioenergy Research Center (GLBRC)</creatorcontrib><title>Environmental Stresses of Field Growth Allow Cinnamyl Alcohol Dehydrogenase-Deficient Nicotiana attenuata Plants to Compensate for their Structural Deficiencies</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>The organized lignocellulosic assemblies of cell walls provide the structural integrity required for the large statures of terrestrial plants. Silencing two CINNAMYL ALCOHOL DEHYDROGENASE (CAD) genes in Nicotiana attenuata produced plants (ir-CAD) with thin, red-pigmented stems, low CAD and sinapyl alcohol dehydrogenase activity, low lignin contents, and rubbery, structurally unstable stems when grown in the glasshouse (GH). However, when planted into their native desert habitat, ir-CAD plants produced robust stems that survived wind storms as well as the wild-type plants. Despite efficient silencing of NaCAD transcripts and enzymatic activity, field-grown ir-CAD plants had delayed and restricted spread of red stem pigmentation, a color change reflecting blocked lignification by CAD silencing, and attained wild-type-comparable total lignin contents. The rubbery GH phenotype was largely restored when field-grown ir-CAD plants were protected from wind, herbivore attack, and ultraviolet B exposure and grown in restricted rooting volumes; conversely, it was lost when ir-CAD plants were experimentally exposed to wind, ultraviolet B, and grown in large pots in growth chambers. Transcript and liquid chromatography-electrospray ionization-time-of-flight analysis revealed that these environmental stresses enhanced the accumulation of various phenylpropanoids in stems of field-grown plants; gas chromatography-mass spectrometry and nuclear magnetic resonance analysis revealed that the lignin of field-grown ir-CAD plants had GH-grown comparable levels of sinapaldehyde and syringaldehyde cross-linked into their lignins. Additionally, field-grown ir-CAD plants had short, thick stems with normal xylem element traits, which collectively enabled field-grown ir-CAD plants to compensate for the structural deficiencies associated with CAD silencing. Environmental stresses play an essential role in regulating lignin biosynthesis in lignin-deficient plants.</description><subject>alcohol dehydrogenase</subject><subject>Alcohol Oxidoreductases - deficiency</subject><subject>Alcohol Oxidoreductases - genetics</subject><subject>Alcohol Oxidoreductases - metabolism</subject><subject>Alcohols</subject><subject>Biological and medical sciences</subject><subject>biosynthesis</subject><subject>cell walls</subject><subject>cinnamyl alcohol dehydrogenase</subject><subject>color</subject><subject>crosslinking</subject><subject>Environment</subject><subject>ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS</subject><subject>enzyme activity</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gas chromatography-mass spectrometry</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene Silencing</subject><subject>Genes</subject><subject>Genes, Plant - genetics</subject><subject>greenhouses</subject><subject>growth chambers</subject><subject>habitats</subject><subject>herbivores</subject><subject>Lignification</subject><subject>Lignin</subject><subject>Lignin - metabolism</subject><subject>lignocellulose</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Metabolome - genetics</subject><subject>Models, Biological</subject><subject>Multigene Family - genetics</subject><subject>Nicotiana - anatomy & histology</subject><subject>Nicotiana - enzymology</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - growth & development</subject><subject>Nicotiana attenuata</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phenylalanine Ammonia-Lyase - genetics</subject><subject>Phenylalanine Ammonia-Lyase - metabolism</subject><subject>phenylpropanoids</subject><subject>Phylogeny</subject><subject>pigmentation</subject><subject>Pigmentation - physiology</subject><subject>Plant growth</subject><subject>Plant physiology and development</subject><subject>Plant Stems - anatomy & histology</subject><subject>Plant Stems - growth & development</subject><subject>planting</subject><subject>Plants</subject><subject>plants (botany)</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>rooting</subject><subject>sinapyl alcohol</subject><subject>Solubility</subject><subject>Stems</subject><subject>storms</subject><subject>Stress, Physiological - genetics</subject><subject>Transcription, Genetic</subject><subject>Transcriptional regulatory elements</subject><subject>ultraviolet radiation</subject><subject>Utah</subject><subject>wind</subject><subject>Xylem</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1v1DAQhiMEokvhyBFkISFxSbGdOIkvSNX2A6QKkICzNXXGjausndpOq_03_FS8ZGnhxMEaj-bRO59F8ZLRI8Zo_X6asuVHTDYtax8VKyYqXnJRd4-LFaX5T7tOHhTPYrymlLKK1U-LA86bWtBGroqfp-7WBu826BKM5FsKGCNG4g05szj25Dz4uzSQ43H0d2RtnYPNdsyu9oMfyQkO2z74K3QQsTxBY7XNSuSz1T5ZcEAgJXQzJCBfR3ApkuTJ2m8mdBESEuMDSQPasEs96zQH2KkuOvnF58UTA2PEF3t7WPw4O_2-_lhefDn_tD6-KHUtZSoRWNe20GtG0XBAFLLhlx1D0_d9p2XFQDSm4bwy3GjWcCZYV2sUtaa9pFAdFh8W3Wm-3GCvcxe5FDUFu4GwVR6s-jfi7KCu_K2qai7y9LPAm0XAx2RV1DahHrR3DnVSjAkuZZ2hd_sswd_MGJPa2KhxzKNBP0fFf--ISsr_izJasV0frMtouaA6-BgDmvuyGVW7K1HTlC1Xy5Vk_vXfvd7Tf84iA2_3AEQNowmQdxEfuIYL2XUic68W7jomHx7iFW_rtuqqX1Ar0rs</recordid><startdate>20120801</startdate><enddate>20120801</enddate><creator>Kaur, Harleen</creator><creator>Shaker, Kamel</creator><creator>Heinzel, Nicolas</creator><creator>Ralph, John</creator><creator>Gális, Ivan</creator><creator>Baldwin, Ian T.</creator><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20120801</creationdate><title>Environmental Stresses of Field Growth Allow Cinnamyl Alcohol Dehydrogenase-Deficient Nicotiana attenuata Plants to Compensate for their Structural Deficiencies</title><author>Kaur, Harleen ; Shaker, Kamel ; Heinzel, Nicolas ; Ralph, John ; Gális, Ivan ; Baldwin, Ian T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-ea1877adc10ef2aee5962b81efddd8c931a56f6223f2fc16215184ce54c0d90a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>alcohol dehydrogenase</topic><topic>Alcohol Oxidoreductases - deficiency</topic><topic>Alcohol Oxidoreductases - genetics</topic><topic>Alcohol Oxidoreductases - metabolism</topic><topic>Alcohols</topic><topic>Biological and medical sciences</topic><topic>biosynthesis</topic><topic>cell walls</topic><topic>cinnamyl alcohol dehydrogenase</topic><topic>color</topic><topic>crosslinking</topic><topic>Environment</topic><topic>ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS</topic><topic>enzyme activity</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gas chromatography-mass spectrometry</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene Silencing</topic><topic>Genes</topic><topic>Genes, Plant - genetics</topic><topic>greenhouses</topic><topic>growth chambers</topic><topic>habitats</topic><topic>herbivores</topic><topic>Lignification</topic><topic>Lignin</topic><topic>Lignin - metabolism</topic><topic>lignocellulose</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Metabolome - genetics</topic><topic>Models, Biological</topic><topic>Multigene Family - genetics</topic><topic>Nicotiana - anatomy & histology</topic><topic>Nicotiana - enzymology</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - growth & development</topic><topic>Nicotiana attenuata</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phenylalanine Ammonia-Lyase - genetics</topic><topic>Phenylalanine Ammonia-Lyase - metabolism</topic><topic>phenylpropanoids</topic><topic>Phylogeny</topic><topic>pigmentation</topic><topic>Pigmentation - physiology</topic><topic>Plant growth</topic><topic>Plant physiology and development</topic><topic>Plant Stems - anatomy & histology</topic><topic>Plant Stems - growth & development</topic><topic>planting</topic><topic>Plants</topic><topic>plants (botany)</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>rooting</topic><topic>sinapyl alcohol</topic><topic>Solubility</topic><topic>Stems</topic><topic>storms</topic><topic>Stress, Physiological - genetics</topic><topic>Transcription, Genetic</topic><topic>Transcriptional regulatory elements</topic><topic>ultraviolet radiation</topic><topic>Utah</topic><topic>wind</topic><topic>Xylem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaur, Harleen</creatorcontrib><creatorcontrib>Shaker, Kamel</creatorcontrib><creatorcontrib>Heinzel, Nicolas</creatorcontrib><creatorcontrib>Ralph, John</creatorcontrib><creatorcontrib>Gális, Ivan</creatorcontrib><creatorcontrib>Baldwin, Ian T.</creatorcontrib><creatorcontrib>Great Lakes Bioenergy Research Center (GLBRC)</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaur, Harleen</au><au>Shaker, Kamel</au><au>Heinzel, Nicolas</au><au>Ralph, John</au><au>Gális, Ivan</au><au>Baldwin, Ian T.</au><aucorp>Great Lakes Bioenergy Research Center (GLBRC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Environmental Stresses of Field Growth Allow Cinnamyl Alcohol Dehydrogenase-Deficient Nicotiana attenuata Plants to Compensate for their Structural Deficiencies</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2012-08-01</date><risdate>2012</risdate><volume>159</volume><issue>4</issue><spage>1545</spage><epage>1570</epage><pages>1545-1570</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>The organized lignocellulosic assemblies of cell walls provide the structural integrity required for the large statures of terrestrial plants. Silencing two CINNAMYL ALCOHOL DEHYDROGENASE (CAD) genes in Nicotiana attenuata produced plants (ir-CAD) with thin, red-pigmented stems, low CAD and sinapyl alcohol dehydrogenase activity, low lignin contents, and rubbery, structurally unstable stems when grown in the glasshouse (GH). However, when planted into their native desert habitat, ir-CAD plants produced robust stems that survived wind storms as well as the wild-type plants. Despite efficient silencing of NaCAD transcripts and enzymatic activity, field-grown ir-CAD plants had delayed and restricted spread of red stem pigmentation, a color change reflecting blocked lignification by CAD silencing, and attained wild-type-comparable total lignin contents. The rubbery GH phenotype was largely restored when field-grown ir-CAD plants were protected from wind, herbivore attack, and ultraviolet B exposure and grown in restricted rooting volumes; conversely, it was lost when ir-CAD plants were experimentally exposed to wind, ultraviolet B, and grown in large pots in growth chambers. Transcript and liquid chromatography-electrospray ionization-time-of-flight analysis revealed that these environmental stresses enhanced the accumulation of various phenylpropanoids in stems of field-grown plants; gas chromatography-mass spectrometry and nuclear magnetic resonance analysis revealed that the lignin of field-grown ir-CAD plants had GH-grown comparable levels of sinapaldehyde and syringaldehyde cross-linked into their lignins. Additionally, field-grown ir-CAD plants had short, thick stems with normal xylem element traits, which collectively enabled field-grown ir-CAD plants to compensate for the structural deficiencies associated with CAD silencing. Environmental stresses play an essential role in regulating lignin biosynthesis in lignin-deficient plants.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>22645069</pmid><doi>10.1104/pp.112.196717</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2012-08, Vol.159 (4), p.1545-1570 |
issn | 0032-0889 1532-2548 1532-2548 |
language | eng |
recordid | cdi_osti_scitechconnect_1152994 |
source | MEDLINE; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals |
subjects | alcohol dehydrogenase Alcohol Oxidoreductases - deficiency Alcohol Oxidoreductases - genetics Alcohol Oxidoreductases - metabolism Alcohols Biological and medical sciences biosynthesis cell walls cinnamyl alcohol dehydrogenase color crosslinking Environment ENVIRONMENTAL STRESS AND ADAPTATION TO STRESS enzyme activity Fundamental and applied biological sciences. Psychology gas chromatography-mass spectrometry Gene Expression Regulation, Plant Gene Silencing Genes Genes, Plant - genetics greenhouses growth chambers habitats herbivores Lignification Lignin Lignin - metabolism lignocellulose Magnetic Resonance Spectroscopy Metabolome - genetics Models, Biological Multigene Family - genetics Nicotiana - anatomy & histology Nicotiana - enzymology Nicotiana - genetics Nicotiana - growth & development Nicotiana attenuata nuclear magnetic resonance spectroscopy Phenotype Phenotypes Phenylalanine Ammonia-Lyase - genetics Phenylalanine Ammonia-Lyase - metabolism phenylpropanoids Phylogeny pigmentation Pigmentation - physiology Plant growth Plant physiology and development Plant Stems - anatomy & histology Plant Stems - growth & development planting Plants plants (botany) RNA, Messenger - genetics RNA, Messenger - metabolism rooting sinapyl alcohol Solubility Stems storms Stress, Physiological - genetics Transcription, Genetic Transcriptional regulatory elements ultraviolet radiation Utah wind Xylem |
title | Environmental Stresses of Field Growth Allow Cinnamyl Alcohol Dehydrogenase-Deficient Nicotiana attenuata Plants to Compensate for their Structural Deficiencies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T09%3A53%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Environmental%20Stresses%20of%20Field%20Growth%20Allow%20Cinnamyl%20Alcohol%20Dehydrogenase-Deficient%20Nicotiana%20attenuata%20Plants%20to%20Compensate%20for%20their%20Structural%20Deficiencies&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Kaur,%20Harleen&rft.aucorp=Great%20Lakes%20Bioenergy%20Research%20Center%20(GLBRC)&rft.date=2012-08-01&rft.volume=159&rft.issue=4&rft.spage=1545&rft.epage=1570&rft.pages=1545-1570&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.112.196717&rft_dat=%3Cjstor_pubme%3E23274738%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1031162118&rft_id=info:pmid/22645069&rft_jstor_id=23274738&rfr_iscdi=true |