Theoretical study of helium insertion and diffusion in 3C-SiC

Insertion and diffusion of helium in cubic silicon carbide have been investigated by means of density functional theory. The method was assessed by calculating relevant properties for the perfect crystal along with point defect formation energies. Results are consistent with available theoretical an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2006, Vol.348 (1), p.51-59
Hauptverfasser: Van Ginhoven, Renée M., Chartier, Alain, Meis, Constantin, Weber, William J., René Corrales, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue 1
container_start_page 51
container_title Journal of nuclear materials
container_volume 348
creator Van Ginhoven, Renée M.
Chartier, Alain
Meis, Constantin
Weber, William J.
René Corrales, L.
description Insertion and diffusion of helium in cubic silicon carbide have been investigated by means of density functional theory. The method was assessed by calculating relevant properties for the perfect crystal along with point defect formation energies. Results are consistent with available theoretical and experimental data. Helium insertion energies were calculated to be lower for divacancy and silicon vacancy defects compared to the other mono-vacancies and interstitial sites considered. Migration barriers for helium were determined by using the nudged elastic band method. Calculated activation energies for migration in and around vacancies (silicon vacancy, carbon vacancy or divacancy) range from 0.6 to 1.0 eV. Activation energy for interstitial migration is calculated to be 2.5 eV. Those values are discussed and related to recent experimental activation energies for migration that range from 1.1 [P. Jung, J. Nucl. Mater. 191–194 (1992) 377] to 3.2 eV [E. Oliviero, A. van Veen, A.V. Fedorov, M.F. Beaufort, J.F. Bardot, Nucl. Instrum. Methods Phys. Res. B 186 (2002) 223; E. Oliviero, M.F. Beaufort, J.F. Bardot, A. van Veen, A.V. Fedorov, J. Appl. Phys. 93 (2003) 231], depending on the SiC samples used and on helium implantation conditions.
doi_str_mv 10.1016/j.jnucmat.2005.09.006
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1152317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311505004289</els_id><sourcerecordid>27979343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-6031879740c41fcd6cd938b78899f8c0a73cad516ffd21f55293f1068d1e43af3</originalsourceid><addsrcrecordid>eNqFkEtLAzEQx4MoWB8fQVgEve06SfaVg4gUX1DwYD2HmAdN2SY1yQr99mZpwaOnYeA3M__5IXSFocKA27t1tXaj3IhUEYCmAlYBtEdohvuOlnVP4BjNAAgpKcbNKTqLcQ0ZZNDM0P1ypX3QyUoxFDGNald4U6z0YMdNYV3UIVnvCuFUoawxY5w66wo6Lz_s_AKdGDFEfXmo5-jz-Wk5fy0X7y9v88dFKSnrUtkCzVlYV4OssZGqlYrR_qvre8ZML0F0VArV4NYYRbBpGsKowdD2CuuaCkPP0fV-r4_J8iht0nIlvXNaJp6fIhR3GbrdQ9vgv0cdE9_YKPUwCKf9GDnJCRitaQabPSiDjzFow7fBbkTYcQx8MsrX_GCUT0Y5MJ6N5rmbwwERsy4ThJM2_g3n_0hN-sw97DmdlfxYHabE2kmtbJgCK2__ufQLt6yM_Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27979343</pqid></control><display><type>article</type><title>Theoretical study of helium insertion and diffusion in 3C-SiC</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Van Ginhoven, Renée M. ; Chartier, Alain ; Meis, Constantin ; Weber, William J. ; René Corrales, L.</creator><creatorcontrib>Van Ginhoven, Renée M. ; Chartier, Alain ; Meis, Constantin ; Weber, William J. ; René Corrales, L. ; Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>Insertion and diffusion of helium in cubic silicon carbide have been investigated by means of density functional theory. The method was assessed by calculating relevant properties for the perfect crystal along with point defect formation energies. Results are consistent with available theoretical and experimental data. Helium insertion energies were calculated to be lower for divacancy and silicon vacancy defects compared to the other mono-vacancies and interstitial sites considered. Migration barriers for helium were determined by using the nudged elastic band method. Calculated activation energies for migration in and around vacancies (silicon vacancy, carbon vacancy or divacancy) range from 0.6 to 1.0 eV. Activation energy for interstitial migration is calculated to be 2.5 eV. Those values are discussed and related to recent experimental activation energies for migration that range from 1.1 [P. Jung, J. Nucl. Mater. 191–194 (1992) 377] to 3.2 eV [E. Oliviero, A. van Veen, A.V. Fedorov, M.F. Beaufort, J.F. Bardot, Nucl. Instrum. Methods Phys. Res. B 186 (2002) 223; E. Oliviero, M.F. Beaufort, J.F. Bardot, A. van Veen, A.V. Fedorov, J. Appl. Phys. 93 (2003) 231], depending on the SiC samples used and on helium implantation conditions.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2005.09.006</identifier><identifier>CODEN: JNUMAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Controled nuclear fusion plants ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Installations for energy generation and conversion: thermal and electrical energy</subject><ispartof>Journal of nuclear materials, 2006, Vol.348 (1), p.51-59</ispartof><rights>2005 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-6031879740c41fcd6cd938b78899f8c0a73cad516ffd21f55293f1068d1e43af3</citedby><cites>FETCH-LOGICAL-c397t-6031879740c41fcd6cd938b78899f8c0a73cad516ffd21f55293f1068d1e43af3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnucmat.2005.09.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,4010,27904,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17402428$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1152317$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Ginhoven, Renée M.</creatorcontrib><creatorcontrib>Chartier, Alain</creatorcontrib><creatorcontrib>Meis, Constantin</creatorcontrib><creatorcontrib>Weber, William J.</creatorcontrib><creatorcontrib>René Corrales, L.</creatorcontrib><creatorcontrib>Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Theoretical study of helium insertion and diffusion in 3C-SiC</title><title>Journal of nuclear materials</title><description>Insertion and diffusion of helium in cubic silicon carbide have been investigated by means of density functional theory. The method was assessed by calculating relevant properties for the perfect crystal along with point defect formation energies. Results are consistent with available theoretical and experimental data. Helium insertion energies were calculated to be lower for divacancy and silicon vacancy defects compared to the other mono-vacancies and interstitial sites considered. Migration barriers for helium were determined by using the nudged elastic band method. Calculated activation energies for migration in and around vacancies (silicon vacancy, carbon vacancy or divacancy) range from 0.6 to 1.0 eV. Activation energy for interstitial migration is calculated to be 2.5 eV. Those values are discussed and related to recent experimental activation energies for migration that range from 1.1 [P. Jung, J. Nucl. Mater. 191–194 (1992) 377] to 3.2 eV [E. Oliviero, A. van Veen, A.V. Fedorov, M.F. Beaufort, J.F. Bardot, Nucl. Instrum. Methods Phys. Res. B 186 (2002) 223; E. Oliviero, M.F. Beaufort, J.F. Bardot, A. van Veen, A.V. Fedorov, J. Appl. Phys. 93 (2003) 231], depending on the SiC samples used and on helium implantation conditions.</description><subject>Applied sciences</subject><subject>Controled nuclear fusion plants</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEQx4MoWB8fQVgEve06SfaVg4gUX1DwYD2HmAdN2SY1yQr99mZpwaOnYeA3M__5IXSFocKA27t1tXaj3IhUEYCmAlYBtEdohvuOlnVP4BjNAAgpKcbNKTqLcQ0ZZNDM0P1ypX3QyUoxFDGNald4U6z0YMdNYV3UIVnvCuFUoawxY5w66wo6Lz_s_AKdGDFEfXmo5-jz-Wk5fy0X7y9v88dFKSnrUtkCzVlYV4OssZGqlYrR_qvre8ZML0F0VArV4NYYRbBpGsKowdD2CuuaCkPP0fV-r4_J8iht0nIlvXNaJp6fIhR3GbrdQ9vgv0cdE9_YKPUwCKf9GDnJCRitaQabPSiDjzFow7fBbkTYcQx8MsrX_GCUT0Y5MJ6N5rmbwwERsy4ThJM2_g3n_0hN-sw97DmdlfxYHabE2kmtbJgCK2__ufQLt6yM_Q</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Van Ginhoven, Renée M.</creator><creator>Chartier, Alain</creator><creator>Meis, Constantin</creator><creator>Weber, William J.</creator><creator>René Corrales, L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>2006</creationdate><title>Theoretical study of helium insertion and diffusion in 3C-SiC</title><author>Van Ginhoven, Renée M. ; Chartier, Alain ; Meis, Constantin ; Weber, William J. ; René Corrales, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-6031879740c41fcd6cd938b78899f8c0a73cad516ffd21f55293f1068d1e43af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Controled nuclear fusion plants</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Ginhoven, Renée M.</creatorcontrib><creatorcontrib>Chartier, Alain</creatorcontrib><creatorcontrib>Meis, Constantin</creatorcontrib><creatorcontrib>Weber, William J.</creatorcontrib><creatorcontrib>René Corrales, L.</creatorcontrib><creatorcontrib>Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Ginhoven, Renée M.</au><au>Chartier, Alain</au><au>Meis, Constantin</au><au>Weber, William J.</au><au>René Corrales, L.</au><aucorp>Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical study of helium insertion and diffusion in 3C-SiC</atitle><jtitle>Journal of nuclear materials</jtitle><date>2006</date><risdate>2006</risdate><volume>348</volume><issue>1</issue><spage>51</spage><epage>59</epage><pages>51-59</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><coden>JNUMAM</coden><abstract>Insertion and diffusion of helium in cubic silicon carbide have been investigated by means of density functional theory. The method was assessed by calculating relevant properties for the perfect crystal along with point defect formation energies. Results are consistent with available theoretical and experimental data. Helium insertion energies were calculated to be lower for divacancy and silicon vacancy defects compared to the other mono-vacancies and interstitial sites considered. Migration barriers for helium were determined by using the nudged elastic band method. Calculated activation energies for migration in and around vacancies (silicon vacancy, carbon vacancy or divacancy) range from 0.6 to 1.0 eV. Activation energy for interstitial migration is calculated to be 2.5 eV. Those values are discussed and related to recent experimental activation energies for migration that range from 1.1 [P. Jung, J. Nucl. Mater. 191–194 (1992) 377] to 3.2 eV [E. Oliviero, A. van Veen, A.V. Fedorov, M.F. Beaufort, J.F. Bardot, Nucl. Instrum. Methods Phys. Res. B 186 (2002) 223; E. Oliviero, M.F. Beaufort, J.F. Bardot, A. van Veen, A.V. Fedorov, J. Appl. Phys. 93 (2003) 231], depending on the SiC samples used and on helium implantation conditions.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2005.09.006</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2006, Vol.348 (1), p.51-59
issn 0022-3115
1873-4820
language eng
recordid cdi_osti_scitechconnect_1152317
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Controled nuclear fusion plants
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fission nuclear power plants
Installations for energy generation and conversion: thermal and electrical energy
title Theoretical study of helium insertion and diffusion in 3C-SiC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A37%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20study%20of%20helium%20insertion%20and%20diffusion%20in%203C-SiC&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Van%20Ginhoven,%20Ren%C3%A9e%20M.&rft.aucorp=Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2006&rft.volume=348&rft.issue=1&rft.spage=51&rft.epage=59&rft.pages=51-59&rft.issn=0022-3115&rft.eissn=1873-4820&rft.coden=JNUMAM&rft_id=info:doi/10.1016/j.jnucmat.2005.09.006&rft_dat=%3Cproquest_osti_%3E27979343%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27979343&rft_id=info:pmid/&rft_els_id=S0022311505004289&rfr_iscdi=true