In Situ Imaging of Single Carbohydrate-Binding Modules on Cellulose Microfibrils

The low efficiency of enzymes used in the bioprocessing of biomass for biofuels is one of the primary bottlenecks that must be overcome to make lignocellulosic biofuels cost-competitive. One of the rate-limiting factors is the accessibility of the cellulase enzymes to insoluble cellulolytic substrat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2011-02, Vol.115 (4), p.635-641
Hauptverfasser: Dagel, Daryl J, Liu, Yu-San, Zhong, Lanlan, Luo, Yonghua, Himmel, Michael E, Xu, Qi, Zeng, Yining, Ding, Shi-You, Smith, Steve
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 641
container_issue 4
container_start_page 635
container_title The journal of physical chemistry. B
container_volume 115
creator Dagel, Daryl J
Liu, Yu-San
Zhong, Lanlan
Luo, Yonghua
Himmel, Michael E
Xu, Qi
Zeng, Yining
Ding, Shi-You
Smith, Steve
description The low efficiency of enzymes used in the bioprocessing of biomass for biofuels is one of the primary bottlenecks that must be overcome to make lignocellulosic biofuels cost-competitive. One of the rate-limiting factors is the accessibility of the cellulase enzymes to insoluble cellulolytic substrates, facilitated by surface absorption of the carbohydrate-binding modules (CBMs), a component of most cellulase systems. Despite their importance, reports of direct observation of CBM function and activity using microscopic methods are still uncommon. Here, we examine the site-specific binding of individual CBMs to crystalline cellulose in an aqueous environment, using the single molecule fluorescence method known as Defocused Orientation and Position Imaging (DOPI). Systematic orientations were observed that are consistent with the CBMs binding to the two opposite hydrophobic faces of the cellulose microfibril, with a well-defined orientation relative to the fiber axis. The approach provides in situ physical evidence indicating the CBMs bind with a well-defined orientation on those planes, thus supporting a binding mechanism driven by chemical and structural recognition of the cellulose surface.
doi_str_mv 10.1021/jp109798p
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1152056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>848322318</sourcerecordid><originalsourceid>FETCH-LOGICAL-a341t-ceeb7aac734ace0b7a7000c7379255628128335a28dd7de54f80c36eb31ce3d63</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMotlYP_gFZBBEPq_nY7KZHLX4UWhTUc8hmZ9uUbVKT3UP_vSlbe_IwzLzMw8vMi9AlwfcEU_Kw2hA8LsZic4SGhFOcxiqO93NOcD5AZyGsMKacivwUDSghOeWCD9HH1Cafpu2S6VotjF0kro7aLhpIJsqXbrmtvGohfTK22q3nruoaCImzyQSapmtcgGRutHe1Kb1pwjk6qVUT4GLfR-j75flr8pbO3l-nk8dZqlhG2lQDlIVSumCZ0oDjXGCMoyzGlPOcCkIFY1xRUVVFBTyrBdYsh5IRDazK2Qhd974utEYGbVrQS-2sBd1Ksvuc76DbHtp499NBaOXaBB3vVhZcF6TIBKOUERHJu56Mn4TgoZYbb9bKbyXBcheyPIQc2au9a1euoTqQf6lG4KYHlA5y5TpvYxL_GP0C-HeCKg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>848322318</pqid></control><display><type>article</type><title>In Situ Imaging of Single Carbohydrate-Binding Modules on Cellulose Microfibrils</title><source>ACS Publications</source><source>MEDLINE</source><creator>Dagel, Daryl J ; Liu, Yu-San ; Zhong, Lanlan ; Luo, Yonghua ; Himmel, Michael E ; Xu, Qi ; Zeng, Yining ; Ding, Shi-You ; Smith, Steve</creator><creatorcontrib>Dagel, Daryl J ; Liu, Yu-San ; Zhong, Lanlan ; Luo, Yonghua ; Himmel, Michael E ; Xu, Qi ; Zeng, Yining ; Ding, Shi-You ; Smith, Steve ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)</creatorcontrib><description>The low efficiency of enzymes used in the bioprocessing of biomass for biofuels is one of the primary bottlenecks that must be overcome to make lignocellulosic biofuels cost-competitive. One of the rate-limiting factors is the accessibility of the cellulase enzymes to insoluble cellulolytic substrates, facilitated by surface absorption of the carbohydrate-binding modules (CBMs), a component of most cellulase systems. Despite their importance, reports of direct observation of CBM function and activity using microscopic methods are still uncommon. Here, we examine the site-specific binding of individual CBMs to crystalline cellulose in an aqueous environment, using the single molecule fluorescence method known as Defocused Orientation and Position Imaging (DOPI). Systematic orientations were observed that are consistent with the CBMs binding to the two opposite hydrophobic faces of the cellulose microfibril, with a well-defined orientation relative to the fiber axis. The approach provides in situ physical evidence indicating the CBMs bind with a well-defined orientation on those planes, thus supporting a binding mechanism driven by chemical and structural recognition of the cellulose surface.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp109798p</identifier><identifier>PMID: 21162585</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>B: Macromolecules, Soft Matter ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Biofuels ; Cellulases - chemistry ; Cellulases - genetics ; Cellulose - chemistry ; Crystallization ; Escherichia coli - genetics ; Fungal Proteins - chemistry ; Fungal Proteins - genetics ; Green Fluorescent Proteins - genetics ; Microfibrils - chemistry ; Microscopy, Fluorescence ; Models, Chemical ; Models, Molecular ; Protein Binding ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics</subject><ispartof>The journal of physical chemistry. B, 2011-02, Vol.115 (4), p.635-641</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a341t-ceeb7aac734ace0b7a7000c7379255628128335a28dd7de54f80c36eb31ce3d63</citedby><cites>FETCH-LOGICAL-a341t-ceeb7aac734ace0b7a7000c7379255628128335a28dd7de54f80c36eb31ce3d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp109798p$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp109798p$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21162585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1152056$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dagel, Daryl J</creatorcontrib><creatorcontrib>Liu, Yu-San</creatorcontrib><creatorcontrib>Zhong, Lanlan</creatorcontrib><creatorcontrib>Luo, Yonghua</creatorcontrib><creatorcontrib>Himmel, Michael E</creatorcontrib><creatorcontrib>Xu, Qi</creatorcontrib><creatorcontrib>Zeng, Yining</creatorcontrib><creatorcontrib>Ding, Shi-You</creatorcontrib><creatorcontrib>Smith, Steve</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)</creatorcontrib><title>In Situ Imaging of Single Carbohydrate-Binding Modules on Cellulose Microfibrils</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>The low efficiency of enzymes used in the bioprocessing of biomass for biofuels is one of the primary bottlenecks that must be overcome to make lignocellulosic biofuels cost-competitive. One of the rate-limiting factors is the accessibility of the cellulase enzymes to insoluble cellulolytic substrates, facilitated by surface absorption of the carbohydrate-binding modules (CBMs), a component of most cellulase systems. Despite their importance, reports of direct observation of CBM function and activity using microscopic methods are still uncommon. Here, we examine the site-specific binding of individual CBMs to crystalline cellulose in an aqueous environment, using the single molecule fluorescence method known as Defocused Orientation and Position Imaging (DOPI). Systematic orientations were observed that are consistent with the CBMs binding to the two opposite hydrophobic faces of the cellulose microfibril, with a well-defined orientation relative to the fiber axis. The approach provides in situ physical evidence indicating the CBMs bind with a well-defined orientation on those planes, thus supporting a binding mechanism driven by chemical and structural recognition of the cellulose surface.</description><subject>B: Macromolecules, Soft Matter</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Biofuels</subject><subject>Cellulases - chemistry</subject><subject>Cellulases - genetics</subject><subject>Cellulose - chemistry</subject><subject>Crystallization</subject><subject>Escherichia coli - genetics</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - genetics</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Microfibrils - chemistry</subject><subject>Microscopy, Fluorescence</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Protein Binding</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE1LAzEQhoMotlYP_gFZBBEPq_nY7KZHLX4UWhTUc8hmZ9uUbVKT3UP_vSlbe_IwzLzMw8vMi9AlwfcEU_Kw2hA8LsZic4SGhFOcxiqO93NOcD5AZyGsMKacivwUDSghOeWCD9HH1Cafpu2S6VotjF0kro7aLhpIJsqXbrmtvGohfTK22q3nruoaCImzyQSapmtcgGRutHe1Kb1pwjk6qVUT4GLfR-j75flr8pbO3l-nk8dZqlhG2lQDlIVSumCZ0oDjXGCMoyzGlPOcCkIFY1xRUVVFBTyrBdYsh5IRDazK2Qhd974utEYGbVrQS-2sBd1Ksvuc76DbHtp499NBaOXaBB3vVhZcF6TIBKOUERHJu56Mn4TgoZYbb9bKbyXBcheyPIQc2au9a1euoTqQf6lG4KYHlA5y5TpvYxL_GP0C-HeCKg</recordid><startdate>20110203</startdate><enddate>20110203</enddate><creator>Dagel, Daryl J</creator><creator>Liu, Yu-San</creator><creator>Zhong, Lanlan</creator><creator>Luo, Yonghua</creator><creator>Himmel, Michael E</creator><creator>Xu, Qi</creator><creator>Zeng, Yining</creator><creator>Ding, Shi-You</creator><creator>Smith, Steve</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20110203</creationdate><title>In Situ Imaging of Single Carbohydrate-Binding Modules on Cellulose Microfibrils</title><author>Dagel, Daryl J ; Liu, Yu-San ; Zhong, Lanlan ; Luo, Yonghua ; Himmel, Michael E ; Xu, Qi ; Zeng, Yining ; Ding, Shi-You ; Smith, Steve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a341t-ceeb7aac734ace0b7a7000c7379255628128335a28dd7de54f80c36eb31ce3d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>B: Macromolecules, Soft Matter</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Biofuels</topic><topic>Cellulases - chemistry</topic><topic>Cellulases - genetics</topic><topic>Cellulose - chemistry</topic><topic>Crystallization</topic><topic>Escherichia coli - genetics</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - genetics</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Microfibrils - chemistry</topic><topic>Microscopy, Fluorescence</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Protein Binding</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dagel, Daryl J</creatorcontrib><creatorcontrib>Liu, Yu-San</creatorcontrib><creatorcontrib>Zhong, Lanlan</creatorcontrib><creatorcontrib>Luo, Yonghua</creatorcontrib><creatorcontrib>Himmel, Michael E</creatorcontrib><creatorcontrib>Xu, Qi</creatorcontrib><creatorcontrib>Zeng, Yining</creatorcontrib><creatorcontrib>Ding, Shi-You</creatorcontrib><creatorcontrib>Smith, Steve</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dagel, Daryl J</au><au>Liu, Yu-San</au><au>Zhong, Lanlan</au><au>Luo, Yonghua</au><au>Himmel, Michael E</au><au>Xu, Qi</au><au>Zeng, Yining</au><au>Ding, Shi-You</au><au>Smith, Steve</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Imaging of Single Carbohydrate-Binding Modules on Cellulose Microfibrils</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2011-02-03</date><risdate>2011</risdate><volume>115</volume><issue>4</issue><spage>635</spage><epage>641</epage><pages>635-641</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>The low efficiency of enzymes used in the bioprocessing of biomass for biofuels is one of the primary bottlenecks that must be overcome to make lignocellulosic biofuels cost-competitive. One of the rate-limiting factors is the accessibility of the cellulase enzymes to insoluble cellulolytic substrates, facilitated by surface absorption of the carbohydrate-binding modules (CBMs), a component of most cellulase systems. Despite their importance, reports of direct observation of CBM function and activity using microscopic methods are still uncommon. Here, we examine the site-specific binding of individual CBMs to crystalline cellulose in an aqueous environment, using the single molecule fluorescence method known as Defocused Orientation and Position Imaging (DOPI). Systematic orientations were observed that are consistent with the CBMs binding to the two opposite hydrophobic faces of the cellulose microfibril, with a well-defined orientation relative to the fiber axis. The approach provides in situ physical evidence indicating the CBMs bind with a well-defined orientation on those planes, thus supporting a binding mechanism driven by chemical and structural recognition of the cellulose surface.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>21162585</pmid><doi>10.1021/jp109798p</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2011-02, Vol.115 (4), p.635-641
issn 1520-6106
1520-5207
language eng
recordid cdi_osti_scitechconnect_1152056
source ACS Publications; MEDLINE
subjects B: Macromolecules, Soft Matter
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Biofuels
Cellulases - chemistry
Cellulases - genetics
Cellulose - chemistry
Crystallization
Escherichia coli - genetics
Fungal Proteins - chemistry
Fungal Proteins - genetics
Green Fluorescent Proteins - genetics
Microfibrils - chemistry
Microscopy, Fluorescence
Models, Chemical
Models, Molecular
Protein Binding
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
title In Situ Imaging of Single Carbohydrate-Binding Modules on Cellulose Microfibrils
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A53%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Imaging%20of%20Single%20Carbohydrate-Binding%20Modules%20on%20Cellulose%20Microfibrils&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Dagel,%20Daryl%20J&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20BioEnergy%20Science%20Center%20(BESC)&rft.date=2011-02-03&rft.volume=115&rft.issue=4&rft.spage=635&rft.epage=641&rft.pages=635-641&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp109798p&rft_dat=%3Cproquest_osti_%3E848322318%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=848322318&rft_id=info:pmid/21162585&rfr_iscdi=true