In Situ Imaging of Single Carbohydrate-Binding Modules on Cellulose Microfibrils
The low efficiency of enzymes used in the bioprocessing of biomass for biofuels is one of the primary bottlenecks that must be overcome to make lignocellulosic biofuels cost-competitive. One of the rate-limiting factors is the accessibility of the cellulase enzymes to insoluble cellulolytic substrat...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2011-02, Vol.115 (4), p.635-641 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 641 |
---|---|
container_issue | 4 |
container_start_page | 635 |
container_title | The journal of physical chemistry. B |
container_volume | 115 |
creator | Dagel, Daryl J Liu, Yu-San Zhong, Lanlan Luo, Yonghua Himmel, Michael E Xu, Qi Zeng, Yining Ding, Shi-You Smith, Steve |
description | The low efficiency of enzymes used in the bioprocessing of biomass for biofuels is one of the primary bottlenecks that must be overcome to make lignocellulosic biofuels cost-competitive. One of the rate-limiting factors is the accessibility of the cellulase enzymes to insoluble cellulolytic substrates, facilitated by surface absorption of the carbohydrate-binding modules (CBMs), a component of most cellulase systems. Despite their importance, reports of direct observation of CBM function and activity using microscopic methods are still uncommon. Here, we examine the site-specific binding of individual CBMs to crystalline cellulose in an aqueous environment, using the single molecule fluorescence method known as Defocused Orientation and Position Imaging (DOPI). Systematic orientations were observed that are consistent with the CBMs binding to the two opposite hydrophobic faces of the cellulose microfibril, with a well-defined orientation relative to the fiber axis. The approach provides in situ physical evidence indicating the CBMs bind with a well-defined orientation on those planes, thus supporting a binding mechanism driven by chemical and structural recognition of the cellulose surface. |
doi_str_mv | 10.1021/jp109798p |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1152056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>848322318</sourcerecordid><originalsourceid>FETCH-LOGICAL-a341t-ceeb7aac734ace0b7a7000c7379255628128335a28dd7de54f80c36eb31ce3d63</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMotlYP_gFZBBEPq_nY7KZHLX4UWhTUc8hmZ9uUbVKT3UP_vSlbe_IwzLzMw8vMi9AlwfcEU_Kw2hA8LsZic4SGhFOcxiqO93NOcD5AZyGsMKacivwUDSghOeWCD9HH1Cafpu2S6VotjF0kro7aLhpIJsqXbrmtvGohfTK22q3nruoaCImzyQSapmtcgGRutHe1Kb1pwjk6qVUT4GLfR-j75flr8pbO3l-nk8dZqlhG2lQDlIVSumCZ0oDjXGCMoyzGlPOcCkIFY1xRUVVFBTyrBdYsh5IRDazK2Qhd974utEYGbVrQS-2sBd1Ksvuc76DbHtp499NBaOXaBB3vVhZcF6TIBKOUERHJu56Mn4TgoZYbb9bKbyXBcheyPIQc2au9a1euoTqQf6lG4KYHlA5y5TpvYxL_GP0C-HeCKg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>848322318</pqid></control><display><type>article</type><title>In Situ Imaging of Single Carbohydrate-Binding Modules on Cellulose Microfibrils</title><source>ACS Publications</source><source>MEDLINE</source><creator>Dagel, Daryl J ; Liu, Yu-San ; Zhong, Lanlan ; Luo, Yonghua ; Himmel, Michael E ; Xu, Qi ; Zeng, Yining ; Ding, Shi-You ; Smith, Steve</creator><creatorcontrib>Dagel, Daryl J ; Liu, Yu-San ; Zhong, Lanlan ; Luo, Yonghua ; Himmel, Michael E ; Xu, Qi ; Zeng, Yining ; Ding, Shi-You ; Smith, Steve ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)</creatorcontrib><description>The low efficiency of enzymes used in the bioprocessing of biomass for biofuels is one of the primary bottlenecks that must be overcome to make lignocellulosic biofuels cost-competitive. One of the rate-limiting factors is the accessibility of the cellulase enzymes to insoluble cellulolytic substrates, facilitated by surface absorption of the carbohydrate-binding modules (CBMs), a component of most cellulase systems. Despite their importance, reports of direct observation of CBM function and activity using microscopic methods are still uncommon. Here, we examine the site-specific binding of individual CBMs to crystalline cellulose in an aqueous environment, using the single molecule fluorescence method known as Defocused Orientation and Position Imaging (DOPI). Systematic orientations were observed that are consistent with the CBMs binding to the two opposite hydrophobic faces of the cellulose microfibril, with a well-defined orientation relative to the fiber axis. The approach provides in situ physical evidence indicating the CBMs bind with a well-defined orientation on those planes, thus supporting a binding mechanism driven by chemical and structural recognition of the cellulose surface.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp109798p</identifier><identifier>PMID: 21162585</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>B: Macromolecules, Soft Matter ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Biofuels ; Cellulases - chemistry ; Cellulases - genetics ; Cellulose - chemistry ; Crystallization ; Escherichia coli - genetics ; Fungal Proteins - chemistry ; Fungal Proteins - genetics ; Green Fluorescent Proteins - genetics ; Microfibrils - chemistry ; Microscopy, Fluorescence ; Models, Chemical ; Models, Molecular ; Protein Binding ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics</subject><ispartof>The journal of physical chemistry. B, 2011-02, Vol.115 (4), p.635-641</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a341t-ceeb7aac734ace0b7a7000c7379255628128335a28dd7de54f80c36eb31ce3d63</citedby><cites>FETCH-LOGICAL-a341t-ceeb7aac734ace0b7a7000c7379255628128335a28dd7de54f80c36eb31ce3d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp109798p$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp109798p$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21162585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1152056$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dagel, Daryl J</creatorcontrib><creatorcontrib>Liu, Yu-San</creatorcontrib><creatorcontrib>Zhong, Lanlan</creatorcontrib><creatorcontrib>Luo, Yonghua</creatorcontrib><creatorcontrib>Himmel, Michael E</creatorcontrib><creatorcontrib>Xu, Qi</creatorcontrib><creatorcontrib>Zeng, Yining</creatorcontrib><creatorcontrib>Ding, Shi-You</creatorcontrib><creatorcontrib>Smith, Steve</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)</creatorcontrib><title>In Situ Imaging of Single Carbohydrate-Binding Modules on Cellulose Microfibrils</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>The low efficiency of enzymes used in the bioprocessing of biomass for biofuels is one of the primary bottlenecks that must be overcome to make lignocellulosic biofuels cost-competitive. One of the rate-limiting factors is the accessibility of the cellulase enzymes to insoluble cellulolytic substrates, facilitated by surface absorption of the carbohydrate-binding modules (CBMs), a component of most cellulase systems. Despite their importance, reports of direct observation of CBM function and activity using microscopic methods are still uncommon. Here, we examine the site-specific binding of individual CBMs to crystalline cellulose in an aqueous environment, using the single molecule fluorescence method known as Defocused Orientation and Position Imaging (DOPI). Systematic orientations were observed that are consistent with the CBMs binding to the two opposite hydrophobic faces of the cellulose microfibril, with a well-defined orientation relative to the fiber axis. The approach provides in situ physical evidence indicating the CBMs bind with a well-defined orientation on those planes, thus supporting a binding mechanism driven by chemical and structural recognition of the cellulose surface.</description><subject>B: Macromolecules, Soft Matter</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Biofuels</subject><subject>Cellulases - chemistry</subject><subject>Cellulases - genetics</subject><subject>Cellulose - chemistry</subject><subject>Crystallization</subject><subject>Escherichia coli - genetics</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - genetics</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Microfibrils - chemistry</subject><subject>Microscopy, Fluorescence</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Protein Binding</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE1LAzEQhoMotlYP_gFZBBEPq_nY7KZHLX4UWhTUc8hmZ9uUbVKT3UP_vSlbe_IwzLzMw8vMi9AlwfcEU_Kw2hA8LsZic4SGhFOcxiqO93NOcD5AZyGsMKacivwUDSghOeWCD9HH1Cafpu2S6VotjF0kro7aLhpIJsqXbrmtvGohfTK22q3nruoaCImzyQSapmtcgGRutHe1Kb1pwjk6qVUT4GLfR-j75flr8pbO3l-nk8dZqlhG2lQDlIVSumCZ0oDjXGCMoyzGlPOcCkIFY1xRUVVFBTyrBdYsh5IRDazK2Qhd974utEYGbVrQS-2sBd1Ksvuc76DbHtp499NBaOXaBB3vVhZcF6TIBKOUERHJu56Mn4TgoZYbb9bKbyXBcheyPIQc2au9a1euoTqQf6lG4KYHlA5y5TpvYxL_GP0C-HeCKg</recordid><startdate>20110203</startdate><enddate>20110203</enddate><creator>Dagel, Daryl J</creator><creator>Liu, Yu-San</creator><creator>Zhong, Lanlan</creator><creator>Luo, Yonghua</creator><creator>Himmel, Michael E</creator><creator>Xu, Qi</creator><creator>Zeng, Yining</creator><creator>Ding, Shi-You</creator><creator>Smith, Steve</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20110203</creationdate><title>In Situ Imaging of Single Carbohydrate-Binding Modules on Cellulose Microfibrils</title><author>Dagel, Daryl J ; Liu, Yu-San ; Zhong, Lanlan ; Luo, Yonghua ; Himmel, Michael E ; Xu, Qi ; Zeng, Yining ; Ding, Shi-You ; Smith, Steve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a341t-ceeb7aac734ace0b7a7000c7379255628128335a28dd7de54f80c36eb31ce3d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>B: Macromolecules, Soft Matter</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Biofuels</topic><topic>Cellulases - chemistry</topic><topic>Cellulases - genetics</topic><topic>Cellulose - chemistry</topic><topic>Crystallization</topic><topic>Escherichia coli - genetics</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - genetics</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Microfibrils - chemistry</topic><topic>Microscopy, Fluorescence</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Protein Binding</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dagel, Daryl J</creatorcontrib><creatorcontrib>Liu, Yu-San</creatorcontrib><creatorcontrib>Zhong, Lanlan</creatorcontrib><creatorcontrib>Luo, Yonghua</creatorcontrib><creatorcontrib>Himmel, Michael E</creatorcontrib><creatorcontrib>Xu, Qi</creatorcontrib><creatorcontrib>Zeng, Yining</creatorcontrib><creatorcontrib>Ding, Shi-You</creatorcontrib><creatorcontrib>Smith, Steve</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dagel, Daryl J</au><au>Liu, Yu-San</au><au>Zhong, Lanlan</au><au>Luo, Yonghua</au><au>Himmel, Michael E</au><au>Xu, Qi</au><au>Zeng, Yining</au><au>Ding, Shi-You</au><au>Smith, Steve</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Imaging of Single Carbohydrate-Binding Modules on Cellulose Microfibrils</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2011-02-03</date><risdate>2011</risdate><volume>115</volume><issue>4</issue><spage>635</spage><epage>641</epage><pages>635-641</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>The low efficiency of enzymes used in the bioprocessing of biomass for biofuels is one of the primary bottlenecks that must be overcome to make lignocellulosic biofuels cost-competitive. One of the rate-limiting factors is the accessibility of the cellulase enzymes to insoluble cellulolytic substrates, facilitated by surface absorption of the carbohydrate-binding modules (CBMs), a component of most cellulase systems. Despite their importance, reports of direct observation of CBM function and activity using microscopic methods are still uncommon. Here, we examine the site-specific binding of individual CBMs to crystalline cellulose in an aqueous environment, using the single molecule fluorescence method known as Defocused Orientation and Position Imaging (DOPI). Systematic orientations were observed that are consistent with the CBMs binding to the two opposite hydrophobic faces of the cellulose microfibril, with a well-defined orientation relative to the fiber axis. The approach provides in situ physical evidence indicating the CBMs bind with a well-defined orientation on those planes, thus supporting a binding mechanism driven by chemical and structural recognition of the cellulose surface.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>21162585</pmid><doi>10.1021/jp109798p</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2011-02, Vol.115 (4), p.635-641 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_osti_scitechconnect_1152056 |
source | ACS Publications; MEDLINE |
subjects | B: Macromolecules, Soft Matter Bacterial Proteins - chemistry Bacterial Proteins - genetics Biofuels Cellulases - chemistry Cellulases - genetics Cellulose - chemistry Crystallization Escherichia coli - genetics Fungal Proteins - chemistry Fungal Proteins - genetics Green Fluorescent Proteins - genetics Microfibrils - chemistry Microscopy, Fluorescence Models, Chemical Models, Molecular Protein Binding Recombinant Proteins - chemistry Recombinant Proteins - genetics |
title | In Situ Imaging of Single Carbohydrate-Binding Modules on Cellulose Microfibrils |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A53%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Imaging%20of%20Single%20Carbohydrate-Binding%20Modules%20on%20Cellulose%20Microfibrils&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Dagel,%20Daryl%20J&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20BioEnergy%20Science%20Center%20(BESC)&rft.date=2011-02-03&rft.volume=115&rft.issue=4&rft.spage=635&rft.epage=641&rft.pages=635-641&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp109798p&rft_dat=%3Cproquest_osti_%3E848322318%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=848322318&rft_id=info:pmid/21162585&rfr_iscdi=true |