Extremely thermophilic microorganisms for biomass conversion: status and prospects
Many microorganisms that grow at elevated temperatures are able to utilize a variety of carbohydrates pertinent to the conversion of lignocellulosic biomass to bioenergy. The range of substrates utilized depends on growth temperature optimum and biotope. Hyperthermophilic marine archaea ( Topt ≥ 80...
Gespeichert in:
Veröffentlicht in: | Current opinion in biotechnology 2008-06, Vol.19 (3), p.210-217 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 217 |
---|---|
container_issue | 3 |
container_start_page | 210 |
container_title | Current opinion in biotechnology |
container_volume | 19 |
creator | Blumer-Schuette, Sara E Kataeva, Irina Westpheling, Janet Adams, Michael WW Kelly, Robert M |
description | Many microorganisms that grow at elevated temperatures are able to utilize a variety of carbohydrates pertinent to the conversion of lignocellulosic biomass to bioenergy. The range of substrates utilized depends on growth temperature optimum and biotope. Hyperthermophilic marine archaea ( Topt ≥ 80 °C) utilize α- and β-linked glucans, such as starch, barley glucan, laminarin, and chitin, while hyperthermophilic marine bacteria ( Topt ≥ 80 °C) utilize the same glucans as well as hemicellulose, such as xylans and mannans. However, none of these organisms are able to efficiently utilize crystalline cellulose. Among the thermophiles, this ability is limited to a few terrestrial bacteria with upper temperature limits for growth near 75 °C. Deconstruction of crystalline cellulose by these extreme thermophiles is achieved by ‘free’ primary cellulases, which are distinct from those typically associated with large multi-enzyme complexes known as cellulosomes. These primary cellulases also differ from the endoglucanases (referred to here as ‘secondary cellulases’) reported from marine hyperthermophiles that show only weak activity toward cellulose. Many extremely thermophilic enzymes implicated in the deconstruction of lignocellulose can be identified in genome sequences, and many more promising biocatalysts probably remain annotated as ‘hypothetical proteins’. Characterization of these enzymes will require intensive effort but is likely to generate new opportunities for the use of renewable resources as biofuels. |
doi_str_mv | 10.1016/j.copbio.2008.04.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1152014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0958166908000529</els_id><sourcerecordid>746080555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-15a5ac36199030690dc6b4e16dca0e6d9a28ca5d652d97e535be6ff0088197f03</originalsourceid><addsrcrecordid>eNqFkk-L1EAQxRtR3NnVbyASPOgpsbqT7qQ9CLLsqrAg-Ofc9HQqTo9JOnYli_Pt7ZABwYOe6vKrqlfvFWPPOBQcuHp9LFyY9j4UAqApoCoA6gdsx5ta51AJ_ZDtQMsm50rpC3ZJdAQAWdbwmF3wRopKqnrHPt_8miMO2J-y-YBxCNPB995lg3cxhPjdjp4GyroQs7RrsESZC-M9RvJhfJPRbOeFMju22RQDTehmesIedbYnfHquV-zb7c3X6w_53af3H6_f3eVOVjDnXFppXam41lCC0tA6ta-Qq9ZZQNVqKxpnZaukaHWNspR7VF2Xjm24rjsor9iLbW6g2RtyfkZ3SOLGJMJwLgXwKkGvNijJ-7kgzWbw5LDv7YhhIVNXChqQUiby5T9JpUUpRaMTWG1gcogoYmem6AcbT4aDWaMxR7NFY9ZoDFQmRZPanp_nL_sB2z9N5ywS8HYDMJl27zGuN-HosPVxPakN_n8b_h7gej96Z_sfeEI6hiWOKRDDDQkD5sv6Hut3JAPSZwhd_gaX67bC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69235289</pqid></control><display><type>article</type><title>Extremely thermophilic microorganisms for biomass conversion: status and prospects</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Blumer-Schuette, Sara E ; Kataeva, Irina ; Westpheling, Janet ; Adams, Michael WW ; Kelly, Robert M</creator><creatorcontrib>Blumer-Schuette, Sara E ; Kataeva, Irina ; Westpheling, Janet ; Adams, Michael WW ; Kelly, Robert M ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)</creatorcontrib><description>Many microorganisms that grow at elevated temperatures are able to utilize a variety of carbohydrates pertinent to the conversion of lignocellulosic biomass to bioenergy. The range of substrates utilized depends on growth temperature optimum and biotope. Hyperthermophilic marine archaea ( Topt ≥ 80 °C) utilize α- and β-linked glucans, such as starch, barley glucan, laminarin, and chitin, while hyperthermophilic marine bacteria ( Topt ≥ 80 °C) utilize the same glucans as well as hemicellulose, such as xylans and mannans. However, none of these organisms are able to efficiently utilize crystalline cellulose. Among the thermophiles, this ability is limited to a few terrestrial bacteria with upper temperature limits for growth near 75 °C. Deconstruction of crystalline cellulose by these extreme thermophiles is achieved by ‘free’ primary cellulases, which are distinct from those typically associated with large multi-enzyme complexes known as cellulosomes. These primary cellulases also differ from the endoglucanases (referred to here as ‘secondary cellulases’) reported from marine hyperthermophiles that show only weak activity toward cellulose. Many extremely thermophilic enzymes implicated in the deconstruction of lignocellulose can be identified in genome sequences, and many more promising biocatalysts probably remain annotated as ‘hypothetical proteins’. Characterization of these enzymes will require intensive effort but is likely to generate new opportunities for the use of renewable resources as biofuels.</description><identifier>ISSN: 0958-1669</identifier><identifier>EISSN: 1879-0429</identifier><identifier>DOI: 10.1016/j.copbio.2008.04.007</identifier><identifier>PMID: 18524567</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Archaea ; Archaea - classification ; Archaea - genetics ; Archaea - metabolism ; Bacteria - classification ; Bacteria - genetics ; Bacteria - metabolism ; Bioelectric Energy Sources ; Biomass ; Biotechnology - trends ; Carbohydrate Metabolism ; Cellulase - metabolism ; Cellulose - metabolism ; Energy-Generating Resources ; Hordeum vulgare ; Hot Temperature ; Internal Medicine ; Marine Biology ; Phylogeny</subject><ispartof>Current opinion in biotechnology, 2008-06, Vol.19 (3), p.210-217</ispartof><rights>Elsevier Ltd</rights><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-15a5ac36199030690dc6b4e16dca0e6d9a28ca5d652d97e535be6ff0088197f03</citedby><cites>FETCH-LOGICAL-c540t-15a5ac36199030690dc6b4e16dca0e6d9a28ca5d652d97e535be6ff0088197f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0958166908000529$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18524567$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1152014$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Blumer-Schuette, Sara E</creatorcontrib><creatorcontrib>Kataeva, Irina</creatorcontrib><creatorcontrib>Westpheling, Janet</creatorcontrib><creatorcontrib>Adams, Michael WW</creatorcontrib><creatorcontrib>Kelly, Robert M</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)</creatorcontrib><title>Extremely thermophilic microorganisms for biomass conversion: status and prospects</title><title>Current opinion in biotechnology</title><addtitle>Curr Opin Biotechnol</addtitle><description>Many microorganisms that grow at elevated temperatures are able to utilize a variety of carbohydrates pertinent to the conversion of lignocellulosic biomass to bioenergy. The range of substrates utilized depends on growth temperature optimum and biotope. Hyperthermophilic marine archaea ( Topt ≥ 80 °C) utilize α- and β-linked glucans, such as starch, barley glucan, laminarin, and chitin, while hyperthermophilic marine bacteria ( Topt ≥ 80 °C) utilize the same glucans as well as hemicellulose, such as xylans and mannans. However, none of these organisms are able to efficiently utilize crystalline cellulose. Among the thermophiles, this ability is limited to a few terrestrial bacteria with upper temperature limits for growth near 75 °C. Deconstruction of crystalline cellulose by these extreme thermophiles is achieved by ‘free’ primary cellulases, which are distinct from those typically associated with large multi-enzyme complexes known as cellulosomes. These primary cellulases also differ from the endoglucanases (referred to here as ‘secondary cellulases’) reported from marine hyperthermophiles that show only weak activity toward cellulose. Many extremely thermophilic enzymes implicated in the deconstruction of lignocellulose can be identified in genome sequences, and many more promising biocatalysts probably remain annotated as ‘hypothetical proteins’. Characterization of these enzymes will require intensive effort but is likely to generate new opportunities for the use of renewable resources as biofuels.</description><subject>Archaea</subject><subject>Archaea - classification</subject><subject>Archaea - genetics</subject><subject>Archaea - metabolism</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Bioelectric Energy Sources</subject><subject>Biomass</subject><subject>Biotechnology - trends</subject><subject>Carbohydrate Metabolism</subject><subject>Cellulase - metabolism</subject><subject>Cellulose - metabolism</subject><subject>Energy-Generating Resources</subject><subject>Hordeum vulgare</subject><subject>Hot Temperature</subject><subject>Internal Medicine</subject><subject>Marine Biology</subject><subject>Phylogeny</subject><issn>0958-1669</issn><issn>1879-0429</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk-L1EAQxRtR3NnVbyASPOgpsbqT7qQ9CLLsqrAg-Ofc9HQqTo9JOnYli_Pt7ZABwYOe6vKrqlfvFWPPOBQcuHp9LFyY9j4UAqApoCoA6gdsx5ta51AJ_ZDtQMsm50rpC3ZJdAQAWdbwmF3wRopKqnrHPt_8miMO2J-y-YBxCNPB995lg3cxhPjdjp4GyroQs7RrsESZC-M9RvJhfJPRbOeFMju22RQDTehmesIedbYnfHquV-zb7c3X6w_53af3H6_f3eVOVjDnXFppXam41lCC0tA6ta-Qq9ZZQNVqKxpnZaukaHWNspR7VF2Xjm24rjsor9iLbW6g2RtyfkZ3SOLGJMJwLgXwKkGvNijJ-7kgzWbw5LDv7YhhIVNXChqQUiby5T9JpUUpRaMTWG1gcogoYmem6AcbT4aDWaMxR7NFY9ZoDFQmRZPanp_nL_sB2z9N5ywS8HYDMJl27zGuN-HosPVxPakN_n8b_h7gej96Z_sfeEI6hiWOKRDDDQkD5sv6Hut3JAPSZwhd_gaX67bC</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Blumer-Schuette, Sara E</creator><creator>Kataeva, Irina</creator><creator>Westpheling, Janet</creator><creator>Adams, Michael WW</creator><creator>Kelly, Robert M</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>P64</scope><scope>OTOTI</scope></search><sort><creationdate>20080601</creationdate><title>Extremely thermophilic microorganisms for biomass conversion: status and prospects</title><author>Blumer-Schuette, Sara E ; Kataeva, Irina ; Westpheling, Janet ; Adams, Michael WW ; Kelly, Robert M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-15a5ac36199030690dc6b4e16dca0e6d9a28ca5d652d97e535be6ff0088197f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Archaea</topic><topic>Archaea - classification</topic><topic>Archaea - genetics</topic><topic>Archaea - metabolism</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Bioelectric Energy Sources</topic><topic>Biomass</topic><topic>Biotechnology - trends</topic><topic>Carbohydrate Metabolism</topic><topic>Cellulase - metabolism</topic><topic>Cellulose - metabolism</topic><topic>Energy-Generating Resources</topic><topic>Hordeum vulgare</topic><topic>Hot Temperature</topic><topic>Internal Medicine</topic><topic>Marine Biology</topic><topic>Phylogeny</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blumer-Schuette, Sara E</creatorcontrib><creatorcontrib>Kataeva, Irina</creatorcontrib><creatorcontrib>Westpheling, Janet</creatorcontrib><creatorcontrib>Adams, Michael WW</creatorcontrib><creatorcontrib>Kelly, Robert M</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Current opinion in biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blumer-Schuette, Sara E</au><au>Kataeva, Irina</au><au>Westpheling, Janet</au><au>Adams, Michael WW</au><au>Kelly, Robert M</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extremely thermophilic microorganisms for biomass conversion: status and prospects</atitle><jtitle>Current opinion in biotechnology</jtitle><addtitle>Curr Opin Biotechnol</addtitle><date>2008-06-01</date><risdate>2008</risdate><volume>19</volume><issue>3</issue><spage>210</spage><epage>217</epage><pages>210-217</pages><issn>0958-1669</issn><eissn>1879-0429</eissn><abstract>Many microorganisms that grow at elevated temperatures are able to utilize a variety of carbohydrates pertinent to the conversion of lignocellulosic biomass to bioenergy. The range of substrates utilized depends on growth temperature optimum and biotope. Hyperthermophilic marine archaea ( Topt ≥ 80 °C) utilize α- and β-linked glucans, such as starch, barley glucan, laminarin, and chitin, while hyperthermophilic marine bacteria ( Topt ≥ 80 °C) utilize the same glucans as well as hemicellulose, such as xylans and mannans. However, none of these organisms are able to efficiently utilize crystalline cellulose. Among the thermophiles, this ability is limited to a few terrestrial bacteria with upper temperature limits for growth near 75 °C. Deconstruction of crystalline cellulose by these extreme thermophiles is achieved by ‘free’ primary cellulases, which are distinct from those typically associated with large multi-enzyme complexes known as cellulosomes. These primary cellulases also differ from the endoglucanases (referred to here as ‘secondary cellulases’) reported from marine hyperthermophiles that show only weak activity toward cellulose. Many extremely thermophilic enzymes implicated in the deconstruction of lignocellulose can be identified in genome sequences, and many more promising biocatalysts probably remain annotated as ‘hypothetical proteins’. Characterization of these enzymes will require intensive effort but is likely to generate new opportunities for the use of renewable resources as biofuels.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>18524567</pmid><doi>10.1016/j.copbio.2008.04.007</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0958-1669 |
ispartof | Current opinion in biotechnology, 2008-06, Vol.19 (3), p.210-217 |
issn | 0958-1669 1879-0429 |
language | eng |
recordid | cdi_osti_scitechconnect_1152014 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Archaea Archaea - classification Archaea - genetics Archaea - metabolism Bacteria - classification Bacteria - genetics Bacteria - metabolism Bioelectric Energy Sources Biomass Biotechnology - trends Carbohydrate Metabolism Cellulase - metabolism Cellulose - metabolism Energy-Generating Resources Hordeum vulgare Hot Temperature Internal Medicine Marine Biology Phylogeny |
title | Extremely thermophilic microorganisms for biomass conversion: status and prospects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extremely%20thermophilic%20microorganisms%20for%20biomass%20conversion:%20status%20and%20prospects&rft.jtitle=Current%20opinion%20in%20biotechnology&rft.au=Blumer-Schuette,%20Sara%20E&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20BioEnergy%20Science%20Center%20(BESC)&rft.date=2008-06-01&rft.volume=19&rft.issue=3&rft.spage=210&rft.epage=217&rft.pages=210-217&rft.issn=0958-1669&rft.eissn=1879-0429&rft_id=info:doi/10.1016/j.copbio.2008.04.007&rft_dat=%3Cproquest_osti_%3E746080555%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=69235289&rft_id=info:pmid/18524567&rft_els_id=S0958166908000529&rfr_iscdi=true |