Trilinear analysis of images obtained with a hyperspectral imaging confocal microscope
Hyperspectral imaging confocal microscopy (HSI‐CM) is a powerful tool for the analysis of cellular processes such as the immune response. HSI‐CM is a data rich technique that routinely generates two‐way data having a spectral domain and an image or concentration domain. Using a variety of modificati...
Gespeichert in:
Veröffentlicht in: | Journal of chemometrics 2008-09, Vol.22 (9), p.491-499 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 499 |
---|---|
container_issue | 9 |
container_start_page | 491 |
container_title | Journal of chemometrics |
container_volume | 22 |
creator | Van Benthem, Mark H. Keenan, Michael R. Davis, Ryan Liu, Ping Jones, Howland D. T. Haaland, David M. Sinclair, Michael B. Brasier, Allan R. |
description | Hyperspectral imaging confocal microscopy (HSI‐CM) is a powerful tool for the analysis of cellular processes such as the immune response. HSI‐CM is a data rich technique that routinely generates two‐way data having a spectral domain and an image or concentration domain. Using a variety of modifications to the instrument or experimental protocols, one can readily produce three‐way data with HSI‐CM. These data are often amenable to trilinear analysis. For example we have used a time series of 18 images acquired during photobleaching of the fluorophores in an effort to identify fluorescence resonance energy transfer (FRET). The resulting images represent intensity as a function of concentration, wavelength and photodegradation in time, to which we apply our techniques of trilinear decomposition. We have successfully employed trilinear decomposition of photobleaching spectral image data from fixed A549 cells transfected with yellow and green fluorescent proteins (YFP and GFP) as molecular probes of cellular proteins involved in the cellular immune response. While useful in the interpretation biological processes, the size of the data generated with the HSI‐CM can be difficult to manage computationally. The 208 × 204 × 512 × 18 elements in the image data require careful processing and efficient analysis algorithms. Accordingly, we have implemented fast algorithms that can quickly perform the trilinear decomposition. In this paper we describe how three‐way data are produced and the methods we have used to process them. Specifically, we show that co‐adding spectra in a spatial neighborhood is a highly effective method for improving the performance of these algorithms without sacrificing resolution. Copyright © 2008 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/cem.1165 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1146408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34473398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5465-3888c20af224ffc5366bf2c1a842b413e01f5823cdcf6e0019c5255134648443</originalsourceid><addsrcrecordid>eNqF0V1vFCEUBmBiNHGtJv6EiYkfN1OBAwxzaTd1q7Z-JBv1jrAUutTZYYTZtPvvPdvdrFfahAQCTw4HXkKeM3rMKOVvnV8dM6bkAzJhtG1rxvXPh2RCtVZ1CxoekyelXFOKZyAm5Ps8xy723ubK9rbblFiqFKq4slceV4vR4uFldRPHZWWr5WbwuQzejdl2dyj2V5VLfUgON1bR5VRcGvxT8ijYrvhn-_mIzN-fzqdn9fmX2Yfpu_PaSaFkDVprx6kNnIsQnASlFoE7ZrXgC8HAUxak5uAuXVCeUtY6yaVkIJTQQsARebErm8oYTXFx9G6J7fTYoWEMFdWIXu_QkNPvtS-jWcXifNfZ3qd1MS0FJSQOlK_-K0FyrgRX90MhGoBW3ws5VcCh0X9fcoDXaZ0xETSccU7l3Uve7ND2m0v2wQwZQ8gbw6jZpm8wfbNNH-nLfT1bMJqQbe9iOXi8t20ko-jqnbuJnd_8s56Znl7s6-59LKO_PXibfxnVQCPNj88zczH7NP16wr6Zj_AHkN_J8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221220508</pqid></control><display><type>article</type><title>Trilinear analysis of images obtained with a hyperspectral imaging confocal microscope</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Van Benthem, Mark H. ; Keenan, Michael R. ; Davis, Ryan ; Liu, Ping ; Jones, Howland D. T. ; Haaland, David M. ; Sinclair, Michael B. ; Brasier, Allan R.</creator><creatorcontrib>Van Benthem, Mark H. ; Keenan, Michael R. ; Davis, Ryan ; Liu, Ping ; Jones, Howland D. T. ; Haaland, David M. ; Sinclair, Michael B. ; Brasier, Allan R. ; Sandia National Lab. (SNL-CA), Livermore, CA (United States) ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Hyperspectral imaging confocal microscopy (HSI‐CM) is a powerful tool for the analysis of cellular processes such as the immune response. HSI‐CM is a data rich technique that routinely generates two‐way data having a spectral domain and an image or concentration domain. Using a variety of modifications to the instrument or experimental protocols, one can readily produce three‐way data with HSI‐CM. These data are often amenable to trilinear analysis. For example we have used a time series of 18 images acquired during photobleaching of the fluorophores in an effort to identify fluorescence resonance energy transfer (FRET). The resulting images represent intensity as a function of concentration, wavelength and photodegradation in time, to which we apply our techniques of trilinear decomposition. We have successfully employed trilinear decomposition of photobleaching spectral image data from fixed A549 cells transfected with yellow and green fluorescent proteins (YFP and GFP) as molecular probes of cellular proteins involved in the cellular immune response. While useful in the interpretation biological processes, the size of the data generated with the HSI‐CM can be difficult to manage computationally. The 208 × 204 × 512 × 18 elements in the image data require careful processing and efficient analysis algorithms. Accordingly, we have implemented fast algorithms that can quickly perform the trilinear decomposition. In this paper we describe how three‐way data are produced and the methods we have used to process them. Specifically, we show that co‐adding spectra in a spatial neighborhood is a highly effective method for improving the performance of these algorithms without sacrificing resolution. Copyright © 2008 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0886-9383</identifier><identifier>EISSN: 1099-128X</identifier><identifier>DOI: 10.1002/cem.1165</identifier><identifier>CODEN: JOCHEU</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Algorithms ; alternating least squares ; Cells ; Chemistry ; confocal fluorescence microscopy ; data compression ; Discriminant analysis ; Exact sciences and technology ; Fluorescence ; fluorescent protein ; General and physical chemistry ; hyperspectral imaging ; Medical imaging ; Microscopy ; multivariate factor analysis ; PARAFAC ; Photochemistry ; Physical chemistry of induced reactions (with radiations, particles and ultrasonics) ; Proteins ; three-way methods ; trilinear</subject><ispartof>Journal of chemometrics, 2008-09, Vol.22 (9), p.491-499</ispartof><rights>Copyright © 2008 John Wiley & Sons, Ltd.</rights><rights>2008 INIST-CNRS</rights><rights>Copyright John Wiley and Sons, Limited Sep 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5465-3888c20af224ffc5366bf2c1a842b413e01f5823cdcf6e0019c5255134648443</citedby><cites>FETCH-LOGICAL-c5465-3888c20af224ffc5366bf2c1a842b413e01f5823cdcf6e0019c5255134648443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcem.1165$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcem.1165$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20697510$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1146408$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Van Benthem, Mark H.</creatorcontrib><creatorcontrib>Keenan, Michael R.</creatorcontrib><creatorcontrib>Davis, Ryan</creatorcontrib><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Jones, Howland D. T.</creatorcontrib><creatorcontrib>Haaland, David M.</creatorcontrib><creatorcontrib>Sinclair, Michael B.</creatorcontrib><creatorcontrib>Brasier, Allan R.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Trilinear analysis of images obtained with a hyperspectral imaging confocal microscope</title><title>Journal of chemometrics</title><addtitle>J. Chemometrics</addtitle><description>Hyperspectral imaging confocal microscopy (HSI‐CM) is a powerful tool for the analysis of cellular processes such as the immune response. HSI‐CM is a data rich technique that routinely generates two‐way data having a spectral domain and an image or concentration domain. Using a variety of modifications to the instrument or experimental protocols, one can readily produce three‐way data with HSI‐CM. These data are often amenable to trilinear analysis. For example we have used a time series of 18 images acquired during photobleaching of the fluorophores in an effort to identify fluorescence resonance energy transfer (FRET). The resulting images represent intensity as a function of concentration, wavelength and photodegradation in time, to which we apply our techniques of trilinear decomposition. We have successfully employed trilinear decomposition of photobleaching spectral image data from fixed A549 cells transfected with yellow and green fluorescent proteins (YFP and GFP) as molecular probes of cellular proteins involved in the cellular immune response. While useful in the interpretation biological processes, the size of the data generated with the HSI‐CM can be difficult to manage computationally. The 208 × 204 × 512 × 18 elements in the image data require careful processing and efficient analysis algorithms. Accordingly, we have implemented fast algorithms that can quickly perform the trilinear decomposition. In this paper we describe how three‐way data are produced and the methods we have used to process them. Specifically, we show that co‐adding spectra in a spatial neighborhood is a highly effective method for improving the performance of these algorithms without sacrificing resolution. Copyright © 2008 John Wiley & Sons, Ltd.</description><subject>Algorithms</subject><subject>alternating least squares</subject><subject>Cells</subject><subject>Chemistry</subject><subject>confocal fluorescence microscopy</subject><subject>data compression</subject><subject>Discriminant analysis</subject><subject>Exact sciences and technology</subject><subject>Fluorescence</subject><subject>fluorescent protein</subject><subject>General and physical chemistry</subject><subject>hyperspectral imaging</subject><subject>Medical imaging</subject><subject>Microscopy</subject><subject>multivariate factor analysis</subject><subject>PARAFAC</subject><subject>Photochemistry</subject><subject>Physical chemistry of induced reactions (with radiations, particles and ultrasonics)</subject><subject>Proteins</subject><subject>three-way methods</subject><subject>trilinear</subject><issn>0886-9383</issn><issn>1099-128X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqF0V1vFCEUBmBiNHGtJv6EiYkfN1OBAwxzaTd1q7Z-JBv1jrAUutTZYYTZtPvvPdvdrFfahAQCTw4HXkKeM3rMKOVvnV8dM6bkAzJhtG1rxvXPh2RCtVZ1CxoekyelXFOKZyAm5Ps8xy723ubK9rbblFiqFKq4slceV4vR4uFldRPHZWWr5WbwuQzejdl2dyj2V5VLfUgON1bR5VRcGvxT8ijYrvhn-_mIzN-fzqdn9fmX2Yfpu_PaSaFkDVprx6kNnIsQnASlFoE7ZrXgC8HAUxak5uAuXVCeUtY6yaVkIJTQQsARebErm8oYTXFx9G6J7fTYoWEMFdWIXu_QkNPvtS-jWcXifNfZ3qd1MS0FJSQOlK_-K0FyrgRX90MhGoBW3ws5VcCh0X9fcoDXaZ0xETSccU7l3Uve7ND2m0v2wQwZQ8gbw6jZpm8wfbNNH-nLfT1bMJqQbe9iOXi8t20ko-jqnbuJnd_8s56Znl7s6-59LKO_PXibfxnVQCPNj88zczH7NP16wr6Zj_AHkN_J8A</recordid><startdate>200809</startdate><enddate>200809</enddate><creator>Van Benthem, Mark H.</creator><creator>Keenan, Michael R.</creator><creator>Davis, Ryan</creator><creator>Liu, Ping</creator><creator>Jones, Howland D. T.</creator><creator>Haaland, David M.</creator><creator>Sinclair, Michael B.</creator><creator>Brasier, Allan R.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7QO</scope><scope>7T5</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>OTOTI</scope></search><sort><creationdate>200809</creationdate><title>Trilinear analysis of images obtained with a hyperspectral imaging confocal microscope</title><author>Van Benthem, Mark H. ; Keenan, Michael R. ; Davis, Ryan ; Liu, Ping ; Jones, Howland D. T. ; Haaland, David M. ; Sinclair, Michael B. ; Brasier, Allan R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5465-3888c20af224ffc5366bf2c1a842b413e01f5823cdcf6e0019c5255134648443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>alternating least squares</topic><topic>Cells</topic><topic>Chemistry</topic><topic>confocal fluorescence microscopy</topic><topic>data compression</topic><topic>Discriminant analysis</topic><topic>Exact sciences and technology</topic><topic>Fluorescence</topic><topic>fluorescent protein</topic><topic>General and physical chemistry</topic><topic>hyperspectral imaging</topic><topic>Medical imaging</topic><topic>Microscopy</topic><topic>multivariate factor analysis</topic><topic>PARAFAC</topic><topic>Photochemistry</topic><topic>Physical chemistry of induced reactions (with radiations, particles and ultrasonics)</topic><topic>Proteins</topic><topic>three-way methods</topic><topic>trilinear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Van Benthem, Mark H.</creatorcontrib><creatorcontrib>Keenan, Michael R.</creatorcontrib><creatorcontrib>Davis, Ryan</creatorcontrib><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Jones, Howland D. T.</creatorcontrib><creatorcontrib>Haaland, David M.</creatorcontrib><creatorcontrib>Sinclair, Michael B.</creatorcontrib><creatorcontrib>Brasier, Allan R.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Journal of chemometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Van Benthem, Mark H.</au><au>Keenan, Michael R.</au><au>Davis, Ryan</au><au>Liu, Ping</au><au>Jones, Howland D. T.</au><au>Haaland, David M.</au><au>Sinclair, Michael B.</au><au>Brasier, Allan R.</au><aucorp>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</aucorp><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trilinear analysis of images obtained with a hyperspectral imaging confocal microscope</atitle><jtitle>Journal of chemometrics</jtitle><addtitle>J. Chemometrics</addtitle><date>2008-09</date><risdate>2008</risdate><volume>22</volume><issue>9</issue><spage>491</spage><epage>499</epage><pages>491-499</pages><issn>0886-9383</issn><eissn>1099-128X</eissn><coden>JOCHEU</coden><abstract>Hyperspectral imaging confocal microscopy (HSI‐CM) is a powerful tool for the analysis of cellular processes such as the immune response. HSI‐CM is a data rich technique that routinely generates two‐way data having a spectral domain and an image or concentration domain. Using a variety of modifications to the instrument or experimental protocols, one can readily produce three‐way data with HSI‐CM. These data are often amenable to trilinear analysis. For example we have used a time series of 18 images acquired during photobleaching of the fluorophores in an effort to identify fluorescence resonance energy transfer (FRET). The resulting images represent intensity as a function of concentration, wavelength and photodegradation in time, to which we apply our techniques of trilinear decomposition. We have successfully employed trilinear decomposition of photobleaching spectral image data from fixed A549 cells transfected with yellow and green fluorescent proteins (YFP and GFP) as molecular probes of cellular proteins involved in the cellular immune response. While useful in the interpretation biological processes, the size of the data generated with the HSI‐CM can be difficult to manage computationally. The 208 × 204 × 512 × 18 elements in the image data require careful processing and efficient analysis algorithms. Accordingly, we have implemented fast algorithms that can quickly perform the trilinear decomposition. In this paper we describe how three‐way data are produced and the methods we have used to process them. Specifically, we show that co‐adding spectra in a spatial neighborhood is a highly effective method for improving the performance of these algorithms without sacrificing resolution. Copyright © 2008 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/cem.1165</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0886-9383 |
ispartof | Journal of chemometrics, 2008-09, Vol.22 (9), p.491-499 |
issn | 0886-9383 1099-128X |
language | eng |
recordid | cdi_osti_scitechconnect_1146408 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms alternating least squares Cells Chemistry confocal fluorescence microscopy data compression Discriminant analysis Exact sciences and technology Fluorescence fluorescent protein General and physical chemistry hyperspectral imaging Medical imaging Microscopy multivariate factor analysis PARAFAC Photochemistry Physical chemistry of induced reactions (with radiations, particles and ultrasonics) Proteins three-way methods trilinear |
title | Trilinear analysis of images obtained with a hyperspectral imaging confocal microscope |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T13%3A53%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trilinear%20analysis%20of%20images%20obtained%20with%20a%20hyperspectral%20imaging%20confocal%20microscope&rft.jtitle=Journal%20of%20chemometrics&rft.au=Van%20Benthem,%20Mark%20H.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-CA),%20Livermore,%20CA%20(United%20States)&rft.date=2008-09&rft.volume=22&rft.issue=9&rft.spage=491&rft.epage=499&rft.pages=491-499&rft.issn=0886-9383&rft.eissn=1099-128X&rft.coden=JOCHEU&rft_id=info:doi/10.1002/cem.1165&rft_dat=%3Cproquest_osti_%3E34473398%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221220508&rft_id=info:pmid/&rfr_iscdi=true |