Enhanced Light-Harvesting Capacity by Micellar Assembly of Free Accessory Chromophores and LH1-like Antennas
Biohybrid light‐harvesting antennas are an emerging platform technology with versatile tailorability for solar‐energy conversion. These systems combine the proven peptide scaffold unit utilized for light harvesting by purple photosynthetic bacteria with attached synthetic chromophores to extend sola...
Gespeichert in:
Veröffentlicht in: | Photochemistry and photobiology 2014-11, Vol.90 (6), p.1264-1276 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1276 |
---|---|
container_issue | 6 |
container_start_page | 1264 |
container_title | Photochemistry and photobiology |
container_volume | 90 |
creator | Harris, Michelle A. Sahin, Tuba Jiang, Jianbing Vairaprakash, Pothiappan Parkes-Loach, Pamela S. Niedzwiedzki, Dariusz M. Kirmaier, Christine Loach, Paul A. Bocian, David F. Holten, Dewey Lindsey, Jonathan S. |
description | Biohybrid light‐harvesting antennas are an emerging platform technology with versatile tailorability for solar‐energy conversion. These systems combine the proven peptide scaffold unit utilized for light harvesting by purple photosynthetic bacteria with attached synthetic chromophores to extend solar coverage beyond that of the natural systems. Herein, synthetic unattached chromophores are employed that partition into the organized milieu (e.g. detergent micelles) that house the LH1‐like biohybrid architectures. The synthetic chromophores include a hydrophobic boron‐dipyrrin dye (A1) and an amphiphilic bacteriochlorin (A2), which transfer energy with reasonable efficiency to the bacteriochlorophyll acceptor array (B875) of the LH1‐like cyclic oligomers. The energy‐transfer efficiencies are markedly increased upon covalent attachment of a bacteriochlorin (B1 or B2) to the peptide scaffold, where the latter likely acts as an energy‐transfer relay site for the (potentially diffusing) free chromophores. The efficiencies are consistent with a Förster (through‐space) mechanism for energy transfer. The overall energy‐transfer efficiency from the free chromophores via the relay to the target site can approach those obtained previously by relay‐assisted energy transfer from chromophores attached at distant sites on the peptides. Thus, the use of free accessory chromophores affords a simple design to enhance the overall light‐harvesting capacity of biohybrid LH1‐like architectures.
Biohybrid light‐harvesting antennas have been created that comprise LH1‐like biohybrid architectures (with or without an attached synthetic bacteriochlorin) and free synthetic chromophores (hydrophobic boron‐dipyrrin dye or an amphiphilic bacteriochlorin) in detergent micelles. The synthetic chromophores transfer energy directly or via relay processes to the bacteriochlorophyll acceptor array (B875) of the LH1‐like cyclic oligomers. |
doi_str_mv | 10.1111/php.12319 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1144846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3522674951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4889-28cf4ccce335e270b6f9e34a240ec53c4123e70ab0b05dd9f77f0423c971ad0b3</originalsourceid><addsrcrecordid>eNp1kcFu1DAURS0EokNhwQ8gCzZ0kdaO7ThZjqLODGJaigRiaTnOS5M2sYOdAfL3uE3bBRLeeHPekY4uQm8pOaXxnY3teEpTRotnaEWloAklhXyOVoQwmuSZEEfoVQg3hFBeSPoSHaWCsCIvshXqz22rrYEa77vrdkp22v-CMHX2Gpd61KabZlzN-KIz0Pfa43UIMFT9jF2DNx4Ar42BEJyfcdl6N7ixdR4C1jYadzTpu9vI2Ams1eE1etHoPsCbh_8Yfd-cfyt3yf7L9lO53ieG53mRpLlpuIlexgSkklRZUwDjOuUEjGCGx1aQRFekIqKui0bKhvCUmRina1KxY_R-8bpYokKMANMaZy2YSVHKec6zCH1coNG7n4fYrIYu3FdacIegaJYKxlNK84h--Ae9cQdvY0KkmCCCF5xH6mShjHcheGjU6LtB-1lRou52UnEndb9TZN89GA_VAPUT-ThMBM4W4HfXw_x_k7raXT0qk-WiCxP8ebrQ_lZlkkmhflxulfy62ZZ081lx9hfTzqoE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1635054944</pqid></control><display><type>article</type><title>Enhanced Light-Harvesting Capacity by Micellar Assembly of Free Accessory Chromophores and LH1-like Antennas</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Harris, Michelle A. ; Sahin, Tuba ; Jiang, Jianbing ; Vairaprakash, Pothiappan ; Parkes-Loach, Pamela S. ; Niedzwiedzki, Dariusz M. ; Kirmaier, Christine ; Loach, Paul A. ; Bocian, David F. ; Holten, Dewey ; Lindsey, Jonathan S.</creator><creatorcontrib>Harris, Michelle A. ; Sahin, Tuba ; Jiang, Jianbing ; Vairaprakash, Pothiappan ; Parkes-Loach, Pamela S. ; Niedzwiedzki, Dariusz M. ; Kirmaier, Christine ; Loach, Paul A. ; Bocian, David F. ; Holten, Dewey ; Lindsey, Jonathan S. ; Washington Univ., St. Louis, MO (United States)</creatorcontrib><description>Biohybrid light‐harvesting antennas are an emerging platform technology with versatile tailorability for solar‐energy conversion. These systems combine the proven peptide scaffold unit utilized for light harvesting by purple photosynthetic bacteria with attached synthetic chromophores to extend solar coverage beyond that of the natural systems. Herein, synthetic unattached chromophores are employed that partition into the organized milieu (e.g. detergent micelles) that house the LH1‐like biohybrid architectures. The synthetic chromophores include a hydrophobic boron‐dipyrrin dye (A1) and an amphiphilic bacteriochlorin (A2), which transfer energy with reasonable efficiency to the bacteriochlorophyll acceptor array (B875) of the LH1‐like cyclic oligomers. The energy‐transfer efficiencies are markedly increased upon covalent attachment of a bacteriochlorin (B1 or B2) to the peptide scaffold, where the latter likely acts as an energy‐transfer relay site for the (potentially diffusing) free chromophores. The efficiencies are consistent with a Förster (through‐space) mechanism for energy transfer. The overall energy‐transfer efficiency from the free chromophores via the relay to the target site can approach those obtained previously by relay‐assisted energy transfer from chromophores attached at distant sites on the peptides. Thus, the use of free accessory chromophores affords a simple design to enhance the overall light‐harvesting capacity of biohybrid LH1‐like architectures.
Biohybrid light‐harvesting antennas have been created that comprise LH1‐like biohybrid architectures (with or without an attached synthetic bacteriochlorin) and free synthetic chromophores (hydrophobic boron‐dipyrrin dye or an amphiphilic bacteriochlorin) in detergent micelles. The synthetic chromophores transfer energy directly or via relay processes to the bacteriochlorophyll acceptor array (B875) of the LH1‐like cyclic oligomers.</description><identifier>ISSN: 0031-8655</identifier><identifier>EISSN: 1751-1097</identifier><identifier>DOI: 10.1111/php.12319</identifier><identifier>PMID: 25039896</identifier><identifier>CODEN: PHCBAP</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Antennas ; Energy Transfer ; Light ; Light-Harvesting Protein Complexes - chemistry ; Micelles ; Molecules ; Photosynthesis ; SOLAR ENERGY ; Spectroscopy, Fourier Transform Infrared</subject><ispartof>Photochemistry and photobiology, 2014-11, Vol.90 (6), p.1264-1276</ispartof><rights>2014 The American Society of Photobiology</rights><rights>2014 The American Society of Photobiology.</rights><rights>Copyright Blackwell Publishing Ltd. Nov-Dec 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4889-28cf4ccce335e270b6f9e34a240ec53c4123e70ab0b05dd9f77f0423c971ad0b3</citedby><cites>FETCH-LOGICAL-c4889-28cf4ccce335e270b6f9e34a240ec53c4123e70ab0b05dd9f77f0423c971ad0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fphp.12319$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fphp.12319$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25039896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1144846$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Harris, Michelle A.</creatorcontrib><creatorcontrib>Sahin, Tuba</creatorcontrib><creatorcontrib>Jiang, Jianbing</creatorcontrib><creatorcontrib>Vairaprakash, Pothiappan</creatorcontrib><creatorcontrib>Parkes-Loach, Pamela S.</creatorcontrib><creatorcontrib>Niedzwiedzki, Dariusz M.</creatorcontrib><creatorcontrib>Kirmaier, Christine</creatorcontrib><creatorcontrib>Loach, Paul A.</creatorcontrib><creatorcontrib>Bocian, David F.</creatorcontrib><creatorcontrib>Holten, Dewey</creatorcontrib><creatorcontrib>Lindsey, Jonathan S.</creatorcontrib><creatorcontrib>Washington Univ., St. Louis, MO (United States)</creatorcontrib><title>Enhanced Light-Harvesting Capacity by Micellar Assembly of Free Accessory Chromophores and LH1-like Antennas</title><title>Photochemistry and photobiology</title><addtitle>Photochem Photobiol</addtitle><description>Biohybrid light‐harvesting antennas are an emerging platform technology with versatile tailorability for solar‐energy conversion. These systems combine the proven peptide scaffold unit utilized for light harvesting by purple photosynthetic bacteria with attached synthetic chromophores to extend solar coverage beyond that of the natural systems. Herein, synthetic unattached chromophores are employed that partition into the organized milieu (e.g. detergent micelles) that house the LH1‐like biohybrid architectures. The synthetic chromophores include a hydrophobic boron‐dipyrrin dye (A1) and an amphiphilic bacteriochlorin (A2), which transfer energy with reasonable efficiency to the bacteriochlorophyll acceptor array (B875) of the LH1‐like cyclic oligomers. The energy‐transfer efficiencies are markedly increased upon covalent attachment of a bacteriochlorin (B1 or B2) to the peptide scaffold, where the latter likely acts as an energy‐transfer relay site for the (potentially diffusing) free chromophores. The efficiencies are consistent with a Förster (through‐space) mechanism for energy transfer. The overall energy‐transfer efficiency from the free chromophores via the relay to the target site can approach those obtained previously by relay‐assisted energy transfer from chromophores attached at distant sites on the peptides. Thus, the use of free accessory chromophores affords a simple design to enhance the overall light‐harvesting capacity of biohybrid LH1‐like architectures.
Biohybrid light‐harvesting antennas have been created that comprise LH1‐like biohybrid architectures (with or without an attached synthetic bacteriochlorin) and free synthetic chromophores (hydrophobic boron‐dipyrrin dye or an amphiphilic bacteriochlorin) in detergent micelles. The synthetic chromophores transfer energy directly or via relay processes to the bacteriochlorophyll acceptor array (B875) of the LH1‐like cyclic oligomers.</description><subject>Antennas</subject><subject>Energy Transfer</subject><subject>Light</subject><subject>Light-Harvesting Protein Complexes - chemistry</subject><subject>Micelles</subject><subject>Molecules</subject><subject>Photosynthesis</subject><subject>SOLAR ENERGY</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><issn>0031-8655</issn><issn>1751-1097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFu1DAURS0EokNhwQ8gCzZ0kdaO7ThZjqLODGJaigRiaTnOS5M2sYOdAfL3uE3bBRLeeHPekY4uQm8pOaXxnY3teEpTRotnaEWloAklhXyOVoQwmuSZEEfoVQg3hFBeSPoSHaWCsCIvshXqz22rrYEa77vrdkp22v-CMHX2Gpd61KabZlzN-KIz0Pfa43UIMFT9jF2DNx4Ar42BEJyfcdl6N7ixdR4C1jYadzTpu9vI2Ams1eE1etHoPsCbh_8Yfd-cfyt3yf7L9lO53ieG53mRpLlpuIlexgSkklRZUwDjOuUEjGCGx1aQRFekIqKui0bKhvCUmRina1KxY_R-8bpYokKMANMaZy2YSVHKec6zCH1coNG7n4fYrIYu3FdacIegaJYKxlNK84h--Ae9cQdvY0KkmCCCF5xH6mShjHcheGjU6LtB-1lRou52UnEndb9TZN89GA_VAPUT-ThMBM4W4HfXw_x_k7raXT0qk-WiCxP8ebrQ_lZlkkmhflxulfy62ZZ081lx9hfTzqoE</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Harris, Michelle A.</creator><creator>Sahin, Tuba</creator><creator>Jiang, Jianbing</creator><creator>Vairaprakash, Pothiappan</creator><creator>Parkes-Loach, Pamela S.</creator><creator>Niedzwiedzki, Dariusz M.</creator><creator>Kirmaier, Christine</creator><creator>Loach, Paul A.</creator><creator>Bocian, David F.</creator><creator>Holten, Dewey</creator><creator>Lindsey, Jonathan S.</creator><general>Blackwell Publishing Ltd</general><general>The American Society of Photobiology</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>201411</creationdate><title>Enhanced Light-Harvesting Capacity by Micellar Assembly of Free Accessory Chromophores and LH1-like Antennas</title><author>Harris, Michelle A. ; Sahin, Tuba ; Jiang, Jianbing ; Vairaprakash, Pothiappan ; Parkes-Loach, Pamela S. ; Niedzwiedzki, Dariusz M. ; Kirmaier, Christine ; Loach, Paul A. ; Bocian, David F. ; Holten, Dewey ; Lindsey, Jonathan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4889-28cf4ccce335e270b6f9e34a240ec53c4123e70ab0b05dd9f77f0423c971ad0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Antennas</topic><topic>Energy Transfer</topic><topic>Light</topic><topic>Light-Harvesting Protein Complexes - chemistry</topic><topic>Micelles</topic><topic>Molecules</topic><topic>Photosynthesis</topic><topic>SOLAR ENERGY</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harris, Michelle A.</creatorcontrib><creatorcontrib>Sahin, Tuba</creatorcontrib><creatorcontrib>Jiang, Jianbing</creatorcontrib><creatorcontrib>Vairaprakash, Pothiappan</creatorcontrib><creatorcontrib>Parkes-Loach, Pamela S.</creatorcontrib><creatorcontrib>Niedzwiedzki, Dariusz M.</creatorcontrib><creatorcontrib>Kirmaier, Christine</creatorcontrib><creatorcontrib>Loach, Paul A.</creatorcontrib><creatorcontrib>Bocian, David F.</creatorcontrib><creatorcontrib>Holten, Dewey</creatorcontrib><creatorcontrib>Lindsey, Jonathan S.</creatorcontrib><creatorcontrib>Washington Univ., St. Louis, MO (United States)</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Photochemistry and photobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harris, Michelle A.</au><au>Sahin, Tuba</au><au>Jiang, Jianbing</au><au>Vairaprakash, Pothiappan</au><au>Parkes-Loach, Pamela S.</au><au>Niedzwiedzki, Dariusz M.</au><au>Kirmaier, Christine</au><au>Loach, Paul A.</au><au>Bocian, David F.</au><au>Holten, Dewey</au><au>Lindsey, Jonathan S.</au><aucorp>Washington Univ., St. Louis, MO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Light-Harvesting Capacity by Micellar Assembly of Free Accessory Chromophores and LH1-like Antennas</atitle><jtitle>Photochemistry and photobiology</jtitle><addtitle>Photochem Photobiol</addtitle><date>2014-11</date><risdate>2014</risdate><volume>90</volume><issue>6</issue><spage>1264</spage><epage>1276</epage><pages>1264-1276</pages><issn>0031-8655</issn><eissn>1751-1097</eissn><coden>PHCBAP</coden><abstract>Biohybrid light‐harvesting antennas are an emerging platform technology with versatile tailorability for solar‐energy conversion. These systems combine the proven peptide scaffold unit utilized for light harvesting by purple photosynthetic bacteria with attached synthetic chromophores to extend solar coverage beyond that of the natural systems. Herein, synthetic unattached chromophores are employed that partition into the organized milieu (e.g. detergent micelles) that house the LH1‐like biohybrid architectures. The synthetic chromophores include a hydrophobic boron‐dipyrrin dye (A1) and an amphiphilic bacteriochlorin (A2), which transfer energy with reasonable efficiency to the bacteriochlorophyll acceptor array (B875) of the LH1‐like cyclic oligomers. The energy‐transfer efficiencies are markedly increased upon covalent attachment of a bacteriochlorin (B1 or B2) to the peptide scaffold, where the latter likely acts as an energy‐transfer relay site for the (potentially diffusing) free chromophores. The efficiencies are consistent with a Förster (through‐space) mechanism for energy transfer. The overall energy‐transfer efficiency from the free chromophores via the relay to the target site can approach those obtained previously by relay‐assisted energy transfer from chromophores attached at distant sites on the peptides. Thus, the use of free accessory chromophores affords a simple design to enhance the overall light‐harvesting capacity of biohybrid LH1‐like architectures.
Biohybrid light‐harvesting antennas have been created that comprise LH1‐like biohybrid architectures (with or without an attached synthetic bacteriochlorin) and free synthetic chromophores (hydrophobic boron‐dipyrrin dye or an amphiphilic bacteriochlorin) in detergent micelles. The synthetic chromophores transfer energy directly or via relay processes to the bacteriochlorophyll acceptor array (B875) of the LH1‐like cyclic oligomers.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>25039896</pmid><doi>10.1111/php.12319</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8655 |
ispartof | Photochemistry and photobiology, 2014-11, Vol.90 (6), p.1264-1276 |
issn | 0031-8655 1751-1097 |
language | eng |
recordid | cdi_osti_scitechconnect_1144846 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Antennas Energy Transfer Light Light-Harvesting Protein Complexes - chemistry Micelles Molecules Photosynthesis SOLAR ENERGY Spectroscopy, Fourier Transform Infrared |
title | Enhanced Light-Harvesting Capacity by Micellar Assembly of Free Accessory Chromophores and LH1-like Antennas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Light-Harvesting%20Capacity%20by%20Micellar%20Assembly%20of%20Free%20Accessory%20Chromophores%20and%20LH1-like%20Antennas&rft.jtitle=Photochemistry%20and%20photobiology&rft.au=Harris,%20Michelle%20A.&rft.aucorp=Washington%20Univ.,%20St.%20Louis,%20MO%20(United%20States)&rft.date=2014-11&rft.volume=90&rft.issue=6&rft.spage=1264&rft.epage=1276&rft.pages=1264-1276&rft.issn=0031-8655&rft.eissn=1751-1097&rft.coden=PHCBAP&rft_id=info:doi/10.1111/php.12319&rft_dat=%3Cproquest_osti_%3E3522674951%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1635054944&rft_id=info:pmid/25039896&rfr_iscdi=true |