Enhanced Light-Harvesting Capacity by Micellar Assembly of Free Accessory Chromophores and LH1-like Antennas

Biohybrid light‐harvesting antennas are an emerging platform technology with versatile tailorability for solar‐energy conversion. These systems combine the proven peptide scaffold unit utilized for light harvesting by purple photosynthetic bacteria with attached synthetic chromophores to extend sola...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Photochemistry and photobiology 2014-11, Vol.90 (6), p.1264-1276
Hauptverfasser: Harris, Michelle A., Sahin, Tuba, Jiang, Jianbing, Vairaprakash, Pothiappan, Parkes-Loach, Pamela S., Niedzwiedzki, Dariusz M., Kirmaier, Christine, Loach, Paul A., Bocian, David F., Holten, Dewey, Lindsey, Jonathan S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1276
container_issue 6
container_start_page 1264
container_title Photochemistry and photobiology
container_volume 90
creator Harris, Michelle A.
Sahin, Tuba
Jiang, Jianbing
Vairaprakash, Pothiappan
Parkes-Loach, Pamela S.
Niedzwiedzki, Dariusz M.
Kirmaier, Christine
Loach, Paul A.
Bocian, David F.
Holten, Dewey
Lindsey, Jonathan S.
description Biohybrid light‐harvesting antennas are an emerging platform technology with versatile tailorability for solar‐energy conversion. These systems combine the proven peptide scaffold unit utilized for light harvesting by purple photosynthetic bacteria with attached synthetic chromophores to extend solar coverage beyond that of the natural systems. Herein, synthetic unattached chromophores are employed that partition into the organized milieu (e.g. detergent micelles) that house the LH1‐like biohybrid architectures. The synthetic chromophores include a hydrophobic boron‐dipyrrin dye (A1) and an amphiphilic bacteriochlorin (A2), which transfer energy with reasonable efficiency to the bacteriochlorophyll acceptor array (B875) of the LH1‐like cyclic oligomers. The energy‐transfer efficiencies are markedly increased upon covalent attachment of a bacteriochlorin (B1 or B2) to the peptide scaffold, where the latter likely acts as an energy‐transfer relay site for the (potentially diffusing) free chromophores. The efficiencies are consistent with a Förster (through‐space) mechanism for energy transfer. The overall energy‐transfer efficiency from the free chromophores via the relay to the target site can approach those obtained previously by relay‐assisted energy transfer from chromophores attached at distant sites on the peptides. Thus, the use of free accessory chromophores affords a simple design to enhance the overall light‐harvesting capacity of biohybrid LH1‐like architectures. Biohybrid light‐harvesting antennas have been created that comprise LH1‐like biohybrid architectures (with or without an attached synthetic bacteriochlorin) and free synthetic chromophores (hydrophobic boron‐dipyrrin dye or an amphiphilic bacteriochlorin) in detergent micelles. The synthetic chromophores transfer energy directly or via relay processes to the bacteriochlorophyll acceptor array (B875) of the LH1‐like cyclic oligomers.
doi_str_mv 10.1111/php.12319
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1144846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3522674951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4889-28cf4ccce335e270b6f9e34a240ec53c4123e70ab0b05dd9f77f0423c971ad0b3</originalsourceid><addsrcrecordid>eNp1kcFu1DAURS0EokNhwQ8gCzZ0kdaO7ThZjqLODGJaigRiaTnOS5M2sYOdAfL3uE3bBRLeeHPekY4uQm8pOaXxnY3teEpTRotnaEWloAklhXyOVoQwmuSZEEfoVQg3hFBeSPoSHaWCsCIvshXqz22rrYEa77vrdkp22v-CMHX2Gpd61KabZlzN-KIz0Pfa43UIMFT9jF2DNx4Ar42BEJyfcdl6N7ixdR4C1jYadzTpu9vI2Ams1eE1etHoPsCbh_8Yfd-cfyt3yf7L9lO53ieG53mRpLlpuIlexgSkklRZUwDjOuUEjGCGx1aQRFekIqKui0bKhvCUmRina1KxY_R-8bpYokKMANMaZy2YSVHKec6zCH1coNG7n4fYrIYu3FdacIegaJYKxlNK84h--Ae9cQdvY0KkmCCCF5xH6mShjHcheGjU6LtB-1lRou52UnEndb9TZN89GA_VAPUT-ThMBM4W4HfXw_x_k7raXT0qk-WiCxP8ebrQ_lZlkkmhflxulfy62ZZ081lx9hfTzqoE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1635054944</pqid></control><display><type>article</type><title>Enhanced Light-Harvesting Capacity by Micellar Assembly of Free Accessory Chromophores and LH1-like Antennas</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Harris, Michelle A. ; Sahin, Tuba ; Jiang, Jianbing ; Vairaprakash, Pothiappan ; Parkes-Loach, Pamela S. ; Niedzwiedzki, Dariusz M. ; Kirmaier, Christine ; Loach, Paul A. ; Bocian, David F. ; Holten, Dewey ; Lindsey, Jonathan S.</creator><creatorcontrib>Harris, Michelle A. ; Sahin, Tuba ; Jiang, Jianbing ; Vairaprakash, Pothiappan ; Parkes-Loach, Pamela S. ; Niedzwiedzki, Dariusz M. ; Kirmaier, Christine ; Loach, Paul A. ; Bocian, David F. ; Holten, Dewey ; Lindsey, Jonathan S. ; Washington Univ., St. Louis, MO (United States)</creatorcontrib><description>Biohybrid light‐harvesting antennas are an emerging platform technology with versatile tailorability for solar‐energy conversion. These systems combine the proven peptide scaffold unit utilized for light harvesting by purple photosynthetic bacteria with attached synthetic chromophores to extend solar coverage beyond that of the natural systems. Herein, synthetic unattached chromophores are employed that partition into the organized milieu (e.g. detergent micelles) that house the LH1‐like biohybrid architectures. The synthetic chromophores include a hydrophobic boron‐dipyrrin dye (A1) and an amphiphilic bacteriochlorin (A2), which transfer energy with reasonable efficiency to the bacteriochlorophyll acceptor array (B875) of the LH1‐like cyclic oligomers. The energy‐transfer efficiencies are markedly increased upon covalent attachment of a bacteriochlorin (B1 or B2) to the peptide scaffold, where the latter likely acts as an energy‐transfer relay site for the (potentially diffusing) free chromophores. The efficiencies are consistent with a Förster (through‐space) mechanism for energy transfer. The overall energy‐transfer efficiency from the free chromophores via the relay to the target site can approach those obtained previously by relay‐assisted energy transfer from chromophores attached at distant sites on the peptides. Thus, the use of free accessory chromophores affords a simple design to enhance the overall light‐harvesting capacity of biohybrid LH1‐like architectures. Biohybrid light‐harvesting antennas have been created that comprise LH1‐like biohybrid architectures (with or without an attached synthetic bacteriochlorin) and free synthetic chromophores (hydrophobic boron‐dipyrrin dye or an amphiphilic bacteriochlorin) in detergent micelles. The synthetic chromophores transfer energy directly or via relay processes to the bacteriochlorophyll acceptor array (B875) of the LH1‐like cyclic oligomers.</description><identifier>ISSN: 0031-8655</identifier><identifier>EISSN: 1751-1097</identifier><identifier>DOI: 10.1111/php.12319</identifier><identifier>PMID: 25039896</identifier><identifier>CODEN: PHCBAP</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Antennas ; Energy Transfer ; Light ; Light-Harvesting Protein Complexes - chemistry ; Micelles ; Molecules ; Photosynthesis ; SOLAR ENERGY ; Spectroscopy, Fourier Transform Infrared</subject><ispartof>Photochemistry and photobiology, 2014-11, Vol.90 (6), p.1264-1276</ispartof><rights>2014 The American Society of Photobiology</rights><rights>2014 The American Society of Photobiology.</rights><rights>Copyright Blackwell Publishing Ltd. Nov-Dec 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4889-28cf4ccce335e270b6f9e34a240ec53c4123e70ab0b05dd9f77f0423c971ad0b3</citedby><cites>FETCH-LOGICAL-c4889-28cf4ccce335e270b6f9e34a240ec53c4123e70ab0b05dd9f77f0423c971ad0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fphp.12319$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fphp.12319$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25039896$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1144846$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Harris, Michelle A.</creatorcontrib><creatorcontrib>Sahin, Tuba</creatorcontrib><creatorcontrib>Jiang, Jianbing</creatorcontrib><creatorcontrib>Vairaprakash, Pothiappan</creatorcontrib><creatorcontrib>Parkes-Loach, Pamela S.</creatorcontrib><creatorcontrib>Niedzwiedzki, Dariusz M.</creatorcontrib><creatorcontrib>Kirmaier, Christine</creatorcontrib><creatorcontrib>Loach, Paul A.</creatorcontrib><creatorcontrib>Bocian, David F.</creatorcontrib><creatorcontrib>Holten, Dewey</creatorcontrib><creatorcontrib>Lindsey, Jonathan S.</creatorcontrib><creatorcontrib>Washington Univ., St. Louis, MO (United States)</creatorcontrib><title>Enhanced Light-Harvesting Capacity by Micellar Assembly of Free Accessory Chromophores and LH1-like Antennas</title><title>Photochemistry and photobiology</title><addtitle>Photochem Photobiol</addtitle><description>Biohybrid light‐harvesting antennas are an emerging platform technology with versatile tailorability for solar‐energy conversion. These systems combine the proven peptide scaffold unit utilized for light harvesting by purple photosynthetic bacteria with attached synthetic chromophores to extend solar coverage beyond that of the natural systems. Herein, synthetic unattached chromophores are employed that partition into the organized milieu (e.g. detergent micelles) that house the LH1‐like biohybrid architectures. The synthetic chromophores include a hydrophobic boron‐dipyrrin dye (A1) and an amphiphilic bacteriochlorin (A2), which transfer energy with reasonable efficiency to the bacteriochlorophyll acceptor array (B875) of the LH1‐like cyclic oligomers. The energy‐transfer efficiencies are markedly increased upon covalent attachment of a bacteriochlorin (B1 or B2) to the peptide scaffold, where the latter likely acts as an energy‐transfer relay site for the (potentially diffusing) free chromophores. The efficiencies are consistent with a Förster (through‐space) mechanism for energy transfer. The overall energy‐transfer efficiency from the free chromophores via the relay to the target site can approach those obtained previously by relay‐assisted energy transfer from chromophores attached at distant sites on the peptides. Thus, the use of free accessory chromophores affords a simple design to enhance the overall light‐harvesting capacity of biohybrid LH1‐like architectures. Biohybrid light‐harvesting antennas have been created that comprise LH1‐like biohybrid architectures (with or without an attached synthetic bacteriochlorin) and free synthetic chromophores (hydrophobic boron‐dipyrrin dye or an amphiphilic bacteriochlorin) in detergent micelles. The synthetic chromophores transfer energy directly or via relay processes to the bacteriochlorophyll acceptor array (B875) of the LH1‐like cyclic oligomers.</description><subject>Antennas</subject><subject>Energy Transfer</subject><subject>Light</subject><subject>Light-Harvesting Protein Complexes - chemistry</subject><subject>Micelles</subject><subject>Molecules</subject><subject>Photosynthesis</subject><subject>SOLAR ENERGY</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><issn>0031-8655</issn><issn>1751-1097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kcFu1DAURS0EokNhwQ8gCzZ0kdaO7ThZjqLODGJaigRiaTnOS5M2sYOdAfL3uE3bBRLeeHPekY4uQm8pOaXxnY3teEpTRotnaEWloAklhXyOVoQwmuSZEEfoVQg3hFBeSPoSHaWCsCIvshXqz22rrYEa77vrdkp22v-CMHX2Gpd61KabZlzN-KIz0Pfa43UIMFT9jF2DNx4Ar42BEJyfcdl6N7ixdR4C1jYadzTpu9vI2Ams1eE1etHoPsCbh_8Yfd-cfyt3yf7L9lO53ieG53mRpLlpuIlexgSkklRZUwDjOuUEjGCGx1aQRFekIqKui0bKhvCUmRina1KxY_R-8bpYokKMANMaZy2YSVHKec6zCH1coNG7n4fYrIYu3FdacIegaJYKxlNK84h--Ae9cQdvY0KkmCCCF5xH6mShjHcheGjU6LtB-1lRou52UnEndb9TZN89GA_VAPUT-ThMBM4W4HfXw_x_k7raXT0qk-WiCxP8ebrQ_lZlkkmhflxulfy62ZZ081lx9hfTzqoE</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Harris, Michelle A.</creator><creator>Sahin, Tuba</creator><creator>Jiang, Jianbing</creator><creator>Vairaprakash, Pothiappan</creator><creator>Parkes-Loach, Pamela S.</creator><creator>Niedzwiedzki, Dariusz M.</creator><creator>Kirmaier, Christine</creator><creator>Loach, Paul A.</creator><creator>Bocian, David F.</creator><creator>Holten, Dewey</creator><creator>Lindsey, Jonathan S.</creator><general>Blackwell Publishing Ltd</general><general>The American Society of Photobiology</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>201411</creationdate><title>Enhanced Light-Harvesting Capacity by Micellar Assembly of Free Accessory Chromophores and LH1-like Antennas</title><author>Harris, Michelle A. ; Sahin, Tuba ; Jiang, Jianbing ; Vairaprakash, Pothiappan ; Parkes-Loach, Pamela S. ; Niedzwiedzki, Dariusz M. ; Kirmaier, Christine ; Loach, Paul A. ; Bocian, David F. ; Holten, Dewey ; Lindsey, Jonathan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4889-28cf4ccce335e270b6f9e34a240ec53c4123e70ab0b05dd9f77f0423c971ad0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Antennas</topic><topic>Energy Transfer</topic><topic>Light</topic><topic>Light-Harvesting Protein Complexes - chemistry</topic><topic>Micelles</topic><topic>Molecules</topic><topic>Photosynthesis</topic><topic>SOLAR ENERGY</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harris, Michelle A.</creatorcontrib><creatorcontrib>Sahin, Tuba</creatorcontrib><creatorcontrib>Jiang, Jianbing</creatorcontrib><creatorcontrib>Vairaprakash, Pothiappan</creatorcontrib><creatorcontrib>Parkes-Loach, Pamela S.</creatorcontrib><creatorcontrib>Niedzwiedzki, Dariusz M.</creatorcontrib><creatorcontrib>Kirmaier, Christine</creatorcontrib><creatorcontrib>Loach, Paul A.</creatorcontrib><creatorcontrib>Bocian, David F.</creatorcontrib><creatorcontrib>Holten, Dewey</creatorcontrib><creatorcontrib>Lindsey, Jonathan S.</creatorcontrib><creatorcontrib>Washington Univ., St. Louis, MO (United States)</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Photochemistry and photobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harris, Michelle A.</au><au>Sahin, Tuba</au><au>Jiang, Jianbing</au><au>Vairaprakash, Pothiappan</au><au>Parkes-Loach, Pamela S.</au><au>Niedzwiedzki, Dariusz M.</au><au>Kirmaier, Christine</au><au>Loach, Paul A.</au><au>Bocian, David F.</au><au>Holten, Dewey</au><au>Lindsey, Jonathan S.</au><aucorp>Washington Univ., St. Louis, MO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Light-Harvesting Capacity by Micellar Assembly of Free Accessory Chromophores and LH1-like Antennas</atitle><jtitle>Photochemistry and photobiology</jtitle><addtitle>Photochem Photobiol</addtitle><date>2014-11</date><risdate>2014</risdate><volume>90</volume><issue>6</issue><spage>1264</spage><epage>1276</epage><pages>1264-1276</pages><issn>0031-8655</issn><eissn>1751-1097</eissn><coden>PHCBAP</coden><abstract>Biohybrid light‐harvesting antennas are an emerging platform technology with versatile tailorability for solar‐energy conversion. These systems combine the proven peptide scaffold unit utilized for light harvesting by purple photosynthetic bacteria with attached synthetic chromophores to extend solar coverage beyond that of the natural systems. Herein, synthetic unattached chromophores are employed that partition into the organized milieu (e.g. detergent micelles) that house the LH1‐like biohybrid architectures. The synthetic chromophores include a hydrophobic boron‐dipyrrin dye (A1) and an amphiphilic bacteriochlorin (A2), which transfer energy with reasonable efficiency to the bacteriochlorophyll acceptor array (B875) of the LH1‐like cyclic oligomers. The energy‐transfer efficiencies are markedly increased upon covalent attachment of a bacteriochlorin (B1 or B2) to the peptide scaffold, where the latter likely acts as an energy‐transfer relay site for the (potentially diffusing) free chromophores. The efficiencies are consistent with a Förster (through‐space) mechanism for energy transfer. The overall energy‐transfer efficiency from the free chromophores via the relay to the target site can approach those obtained previously by relay‐assisted energy transfer from chromophores attached at distant sites on the peptides. Thus, the use of free accessory chromophores affords a simple design to enhance the overall light‐harvesting capacity of biohybrid LH1‐like architectures. Biohybrid light‐harvesting antennas have been created that comprise LH1‐like biohybrid architectures (with or without an attached synthetic bacteriochlorin) and free synthetic chromophores (hydrophobic boron‐dipyrrin dye or an amphiphilic bacteriochlorin) in detergent micelles. The synthetic chromophores transfer energy directly or via relay processes to the bacteriochlorophyll acceptor array (B875) of the LH1‐like cyclic oligomers.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>25039896</pmid><doi>10.1111/php.12319</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-8655
ispartof Photochemistry and photobiology, 2014-11, Vol.90 (6), p.1264-1276
issn 0031-8655
1751-1097
language eng
recordid cdi_osti_scitechconnect_1144846
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Antennas
Energy Transfer
Light
Light-Harvesting Protein Complexes - chemistry
Micelles
Molecules
Photosynthesis
SOLAR ENERGY
Spectroscopy, Fourier Transform Infrared
title Enhanced Light-Harvesting Capacity by Micellar Assembly of Free Accessory Chromophores and LH1-like Antennas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T17%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Light-Harvesting%20Capacity%20by%20Micellar%20Assembly%20of%20Free%20Accessory%20Chromophores%20and%20LH1-like%20Antennas&rft.jtitle=Photochemistry%20and%20photobiology&rft.au=Harris,%20Michelle%20A.&rft.aucorp=Washington%20Univ.,%20St.%20Louis,%20MO%20(United%20States)&rft.date=2014-11&rft.volume=90&rft.issue=6&rft.spage=1264&rft.epage=1276&rft.pages=1264-1276&rft.issn=0031-8655&rft.eissn=1751-1097&rft.coden=PHCBAP&rft_id=info:doi/10.1111/php.12319&rft_dat=%3Cproquest_osti_%3E3522674951%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1635054944&rft_id=info:pmid/25039896&rfr_iscdi=true