Approaching the Minimum Thermal Conductivity in Rhenium-Substituted Higher Manganese Silicides

Higher manganese silicides (HMS) made of earth‐abundant and non‐toxic elements are regarded as promising p‐type thermoelectric materials because their complex crystal structure results in low lattice thermal conductivity. It is shown here that the already low thermal conductivity of HMS can be reduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2014-10, Vol.4 (14), p.np-n/a
Hauptverfasser: Chen, Xi, Girard, Steven N., Meng, Fei, Lara-Curzio, Edgar, Jin, Song, Goodenough, John B., Zhou, Jianshi, Shi, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 14
container_start_page np
container_title Advanced energy materials
container_volume 4
creator Chen, Xi
Girard, Steven N.
Meng, Fei
Lara-Curzio, Edgar
Jin, Song
Goodenough, John B.
Zhou, Jianshi
Shi, Li
description Higher manganese silicides (HMS) made of earth‐abundant and non‐toxic elements are regarded as promising p‐type thermoelectric materials because their complex crystal structure results in low lattice thermal conductivity. It is shown here that the already low thermal conductivity of HMS can be reduced further to approach the minimum thermal conductivity via partial substitution of Mn with heavier rhenium (Re) to increase point defect scattering. The solubility limit of Re in the obtained RexMn1‐xSi1.8 is determined to be about x = 0.18. Elemental inhomogeneity and the formation of ReSi1.75 inclusions with 50−200 nm size are found within the HMS matrix. It is found that the power factor does not change markedly at low Re content of x ≤ 0.04 before it drops considerably at higher Re contents. Compared to pure HMS, the reduced lattice thermal conductivity in RexMn1‐xSi1.8 results in a 25% increase of the peak figure of merit ZT to reach 0.57 ± 0.08 at 800 K for x = 0.04. The suppressed thermal conductivity in the pure RexMn1‐xSi1.8 can enable further investigations of the ZT limit of this system by exploring different impurity doping strategies to optimize the carrier concentration and power factor. The lattice thermal conductivity of higher manganese silicides (HMS) is primarily suppressed by rhenium substitution to approach the calculated minimum lattice thermal conductivity value. This leads to improved thermoelectric performance in the Re‐substituted HMS as compared to pure HMS.
doi_str_mv 10.1002/aenm.201400452
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1132985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3453198641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5512-7abc544ca997c854e313e8eb6bbc9ba9f3bbd29455a18dcfa9ecbe3542a78c693</originalsourceid><addsrcrecordid>eNqFkcFv0zAUhy0EElPZlbMFFy4pdmzH8bGqRofUjokNccOyndfGI3FK7Az63-MpqEJc8OX58H1P770fQq8pWVJCyvcGQr8sCeWEcFE-Qxe0oryoak6en_-sfIkuY3wg-XFFCWMX6NvqeBwH41ofDji1gHc--H7q8X0LY286vB5CM7nkH306YR_w5xaCn_ribrIx-TQlaPC1P2Qa70w4mAAR8J3vvPMNxFfoxd50ES7_1AX68uHqfn1dbD9tPq5X28IJQctCGusE584oJV0tODDKoAZbWeuUNWrPrG1KxYUwtG7c3ihwFpjgpZG1qxRboDdz3yEPpaPzCVzrhhDAJU0pK1UtMvRuhvLGPyaISfc-Oui6PPQwRU2lJEySmsqMvv0HfRimMeQVNK0I47Wg-X4LtJwpNw4xjrDXx9H3ZjxpSvRTLPopFn2OJQtqFn76Dk7_ofXq6mb3t1vMro8Jfp1dM37XlWRS6K83G00Zub1Vm63m7DdbsKBB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1603485110</pqid></control><display><type>article</type><title>Approaching the Minimum Thermal Conductivity in Rhenium-Substituted Higher Manganese Silicides</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Xi ; Girard, Steven N. ; Meng, Fei ; Lara-Curzio, Edgar ; Jin, Song ; Goodenough, John B. ; Zhou, Jianshi ; Shi, Li</creator><creatorcontrib>Chen, Xi ; Girard, Steven N. ; Meng, Fei ; Lara-Curzio, Edgar ; Jin, Song ; Goodenough, John B. ; Zhou, Jianshi ; Shi, Li ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Energy Frontier Research Centers (EFRC) (United States). Revolutionary Materials for Solid State Energy Conversion (RMSSEC)</creatorcontrib><description>Higher manganese silicides (HMS) made of earth‐abundant and non‐toxic elements are regarded as promising p‐type thermoelectric materials because their complex crystal structure results in low lattice thermal conductivity. It is shown here that the already low thermal conductivity of HMS can be reduced further to approach the minimum thermal conductivity via partial substitution of Mn with heavier rhenium (Re) to increase point defect scattering. The solubility limit of Re in the obtained RexMn1‐xSi1.8 is determined to be about x = 0.18. Elemental inhomogeneity and the formation of ReSi1.75 inclusions with 50−200 nm size are found within the HMS matrix. It is found that the power factor does not change markedly at low Re content of x ≤ 0.04 before it drops considerably at higher Re contents. Compared to pure HMS, the reduced lattice thermal conductivity in RexMn1‐xSi1.8 results in a 25% increase of the peak figure of merit ZT to reach 0.57 ± 0.08 at 800 K for x = 0.04. The suppressed thermal conductivity in the pure RexMn1‐xSi1.8 can enable further investigations of the ZT limit of this system by exploring different impurity doping strategies to optimize the carrier concentration and power factor. The lattice thermal conductivity of higher manganese silicides (HMS) is primarily suppressed by rhenium substitution to approach the calculated minimum lattice thermal conductivity value. This leads to improved thermoelectric performance in the Re‐substituted HMS as compared to pure HMS.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201400452</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>alloys ; Carrier density ; Heat conductivity ; Heat transfer ; Lattices ; Manganese silicide ; nanostructures ; Point defects ; Power factor ; Rhenium ; silicides ; Thermal conductivity ; thermoelectric ; thermoelectric materials ; Thermoelectricity</subject><ispartof>Advanced energy materials, 2014-10, Vol.4 (14), p.np-n/a</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5512-7abc544ca997c854e313e8eb6bbc9ba9f3bbd29455a18dcfa9ecbe3542a78c693</citedby><cites>FETCH-LOGICAL-c5512-7abc544ca997c854e313e8eb6bbc9ba9f3bbd29455a18dcfa9ecbe3542a78c693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201400452$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201400452$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1132985$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Girard, Steven N.</creatorcontrib><creatorcontrib>Meng, Fei</creatorcontrib><creatorcontrib>Lara-Curzio, Edgar</creatorcontrib><creatorcontrib>Jin, Song</creatorcontrib><creatorcontrib>Goodenough, John B.</creatorcontrib><creatorcontrib>Zhou, Jianshi</creatorcontrib><creatorcontrib>Shi, Li</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Revolutionary Materials for Solid State Energy Conversion (RMSSEC)</creatorcontrib><title>Approaching the Minimum Thermal Conductivity in Rhenium-Substituted Higher Manganese Silicides</title><title>Advanced energy materials</title><addtitle>Adv. Energy Mater</addtitle><description>Higher manganese silicides (HMS) made of earth‐abundant and non‐toxic elements are regarded as promising p‐type thermoelectric materials because their complex crystal structure results in low lattice thermal conductivity. It is shown here that the already low thermal conductivity of HMS can be reduced further to approach the minimum thermal conductivity via partial substitution of Mn with heavier rhenium (Re) to increase point defect scattering. The solubility limit of Re in the obtained RexMn1‐xSi1.8 is determined to be about x = 0.18. Elemental inhomogeneity and the formation of ReSi1.75 inclusions with 50−200 nm size are found within the HMS matrix. It is found that the power factor does not change markedly at low Re content of x ≤ 0.04 before it drops considerably at higher Re contents. Compared to pure HMS, the reduced lattice thermal conductivity in RexMn1‐xSi1.8 results in a 25% increase of the peak figure of merit ZT to reach 0.57 ± 0.08 at 800 K for x = 0.04. The suppressed thermal conductivity in the pure RexMn1‐xSi1.8 can enable further investigations of the ZT limit of this system by exploring different impurity doping strategies to optimize the carrier concentration and power factor. The lattice thermal conductivity of higher manganese silicides (HMS) is primarily suppressed by rhenium substitution to approach the calculated minimum lattice thermal conductivity value. This leads to improved thermoelectric performance in the Re‐substituted HMS as compared to pure HMS.</description><subject>alloys</subject><subject>Carrier density</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Lattices</subject><subject>Manganese silicide</subject><subject>nanostructures</subject><subject>Point defects</subject><subject>Power factor</subject><subject>Rhenium</subject><subject>silicides</subject><subject>Thermal conductivity</subject><subject>thermoelectric</subject><subject>thermoelectric materials</subject><subject>Thermoelectricity</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkcFv0zAUhy0EElPZlbMFFy4pdmzH8bGqRofUjokNccOyndfGI3FK7Az63-MpqEJc8OX58H1P770fQq8pWVJCyvcGQr8sCeWEcFE-Qxe0oryoak6en_-sfIkuY3wg-XFFCWMX6NvqeBwH41ofDji1gHc--H7q8X0LY286vB5CM7nkH306YR_w5xaCn_ribrIx-TQlaPC1P2Qa70w4mAAR8J3vvPMNxFfoxd50ES7_1AX68uHqfn1dbD9tPq5X28IJQctCGusE584oJV0tODDKoAZbWeuUNWrPrG1KxYUwtG7c3ihwFpjgpZG1qxRboDdz3yEPpaPzCVzrhhDAJU0pK1UtMvRuhvLGPyaISfc-Oui6PPQwRU2lJEySmsqMvv0HfRimMeQVNK0I47Wg-X4LtJwpNw4xjrDXx9H3ZjxpSvRTLPopFn2OJQtqFn76Dk7_ofXq6mb3t1vMro8Jfp1dM37XlWRS6K83G00Zub1Vm63m7DdbsKBB</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Chen, Xi</creator><creator>Girard, Steven N.</creator><creator>Meng, Fei</creator><creator>Lara-Curzio, Edgar</creator><creator>Jin, Song</creator><creator>Goodenough, John B.</creator><creator>Zhou, Jianshi</creator><creator>Shi, Li</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20141001</creationdate><title>Approaching the Minimum Thermal Conductivity in Rhenium-Substituted Higher Manganese Silicides</title><author>Chen, Xi ; Girard, Steven N. ; Meng, Fei ; Lara-Curzio, Edgar ; Jin, Song ; Goodenough, John B. ; Zhou, Jianshi ; Shi, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5512-7abc544ca997c854e313e8eb6bbc9ba9f3bbd29455a18dcfa9ecbe3542a78c693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>alloys</topic><topic>Carrier density</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Lattices</topic><topic>Manganese silicide</topic><topic>nanostructures</topic><topic>Point defects</topic><topic>Power factor</topic><topic>Rhenium</topic><topic>silicides</topic><topic>Thermal conductivity</topic><topic>thermoelectric</topic><topic>thermoelectric materials</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Girard, Steven N.</creatorcontrib><creatorcontrib>Meng, Fei</creatorcontrib><creatorcontrib>Lara-Curzio, Edgar</creatorcontrib><creatorcontrib>Jin, Song</creatorcontrib><creatorcontrib>Goodenough, John B.</creatorcontrib><creatorcontrib>Zhou, Jianshi</creatorcontrib><creatorcontrib>Shi, Li</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Revolutionary Materials for Solid State Energy Conversion (RMSSEC)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xi</au><au>Girard, Steven N.</au><au>Meng, Fei</au><au>Lara-Curzio, Edgar</au><au>Jin, Song</au><au>Goodenough, John B.</au><au>Zhou, Jianshi</au><au>Shi, Li</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Revolutionary Materials for Solid State Energy Conversion (RMSSEC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approaching the Minimum Thermal Conductivity in Rhenium-Substituted Higher Manganese Silicides</atitle><jtitle>Advanced energy materials</jtitle><addtitle>Adv. Energy Mater</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>4</volume><issue>14</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Higher manganese silicides (HMS) made of earth‐abundant and non‐toxic elements are regarded as promising p‐type thermoelectric materials because their complex crystal structure results in low lattice thermal conductivity. It is shown here that the already low thermal conductivity of HMS can be reduced further to approach the minimum thermal conductivity via partial substitution of Mn with heavier rhenium (Re) to increase point defect scattering. The solubility limit of Re in the obtained RexMn1‐xSi1.8 is determined to be about x = 0.18. Elemental inhomogeneity and the formation of ReSi1.75 inclusions with 50−200 nm size are found within the HMS matrix. It is found that the power factor does not change markedly at low Re content of x ≤ 0.04 before it drops considerably at higher Re contents. Compared to pure HMS, the reduced lattice thermal conductivity in RexMn1‐xSi1.8 results in a 25% increase of the peak figure of merit ZT to reach 0.57 ± 0.08 at 800 K for x = 0.04. The suppressed thermal conductivity in the pure RexMn1‐xSi1.8 can enable further investigations of the ZT limit of this system by exploring different impurity doping strategies to optimize the carrier concentration and power factor. The lattice thermal conductivity of higher manganese silicides (HMS) is primarily suppressed by rhenium substitution to approach the calculated minimum lattice thermal conductivity value. This leads to improved thermoelectric performance in the Re‐substituted HMS as compared to pure HMS.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aenm.201400452</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2014-10, Vol.4 (14), p.np-n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_osti_scitechconnect_1132985
source Wiley Online Library Journals Frontfile Complete
subjects alloys
Carrier density
Heat conductivity
Heat transfer
Lattices
Manganese silicide
nanostructures
Point defects
Power factor
Rhenium
silicides
Thermal conductivity
thermoelectric
thermoelectric materials
Thermoelectricity
title Approaching the Minimum Thermal Conductivity in Rhenium-Substituted Higher Manganese Silicides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A51%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approaching%20the%20Minimum%20Thermal%20Conductivity%20in%20Rhenium-Substituted%20Higher%20Manganese%20Silicides&rft.jtitle=Advanced%20energy%20materials&rft.au=Chen,%20Xi&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2014-10-01&rft.volume=4&rft.issue=14&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201400452&rft_dat=%3Cproquest_osti_%3E3453198641%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1603485110&rft_id=info:pmid/&rfr_iscdi=true