Approaching the Minimum Thermal Conductivity in Rhenium-Substituted Higher Manganese Silicides
Higher manganese silicides (HMS) made of earth‐abundant and non‐toxic elements are regarded as promising p‐type thermoelectric materials because their complex crystal structure results in low lattice thermal conductivity. It is shown here that the already low thermal conductivity of HMS can be reduc...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2014-10, Vol.4 (14), p.np-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 14 |
container_start_page | np |
container_title | Advanced energy materials |
container_volume | 4 |
creator | Chen, Xi Girard, Steven N. Meng, Fei Lara-Curzio, Edgar Jin, Song Goodenough, John B. Zhou, Jianshi Shi, Li |
description | Higher manganese silicides (HMS) made of earth‐abundant and non‐toxic elements are regarded as promising p‐type thermoelectric materials because their complex crystal structure results in low lattice thermal conductivity. It is shown here that the already low thermal conductivity of HMS can be reduced further to approach the minimum thermal conductivity via partial substitution of Mn with heavier rhenium (Re) to increase point defect scattering. The solubility limit of Re in the obtained RexMn1‐xSi1.8 is determined to be about x = 0.18. Elemental inhomogeneity and the formation of ReSi1.75 inclusions with 50−200 nm size are found within the HMS matrix. It is found that the power factor does not change markedly at low Re content of x ≤ 0.04 before it drops considerably at higher Re contents. Compared to pure HMS, the reduced lattice thermal conductivity in RexMn1‐xSi1.8 results in a 25% increase of the peak figure of merit ZT to reach 0.57 ± 0.08 at 800 K for x = 0.04. The suppressed thermal conductivity in the pure RexMn1‐xSi1.8 can enable further investigations of the ZT limit of this system by exploring different impurity doping strategies to optimize the carrier concentration and power factor.
The lattice thermal conductivity of higher manganese silicides (HMS) is primarily suppressed by rhenium substitution to approach the calculated minimum lattice thermal conductivity value. This leads to improved thermoelectric performance in the Re‐substituted HMS as compared to pure HMS. |
doi_str_mv | 10.1002/aenm.201400452 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1132985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3453198641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5512-7abc544ca997c854e313e8eb6bbc9ba9f3bbd29455a18dcfa9ecbe3542a78c693</originalsourceid><addsrcrecordid>eNqFkcFv0zAUhy0EElPZlbMFFy4pdmzH8bGqRofUjokNccOyndfGI3FK7Az63-MpqEJc8OX58H1P770fQq8pWVJCyvcGQr8sCeWEcFE-Qxe0oryoak6en_-sfIkuY3wg-XFFCWMX6NvqeBwH41ofDji1gHc--H7q8X0LY286vB5CM7nkH306YR_w5xaCn_ribrIx-TQlaPC1P2Qa70w4mAAR8J3vvPMNxFfoxd50ES7_1AX68uHqfn1dbD9tPq5X28IJQctCGusE584oJV0tODDKoAZbWeuUNWrPrG1KxYUwtG7c3ihwFpjgpZG1qxRboDdz3yEPpaPzCVzrhhDAJU0pK1UtMvRuhvLGPyaISfc-Oui6PPQwRU2lJEySmsqMvv0HfRimMeQVNK0I47Wg-X4LtJwpNw4xjrDXx9H3ZjxpSvRTLPopFn2OJQtqFn76Dk7_ofXq6mb3t1vMro8Jfp1dM37XlWRS6K83G00Zub1Vm63m7DdbsKBB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1603485110</pqid></control><display><type>article</type><title>Approaching the Minimum Thermal Conductivity in Rhenium-Substituted Higher Manganese Silicides</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Xi ; Girard, Steven N. ; Meng, Fei ; Lara-Curzio, Edgar ; Jin, Song ; Goodenough, John B. ; Zhou, Jianshi ; Shi, Li</creator><creatorcontrib>Chen, Xi ; Girard, Steven N. ; Meng, Fei ; Lara-Curzio, Edgar ; Jin, Song ; Goodenough, John B. ; Zhou, Jianshi ; Shi, Li ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Energy Frontier Research Centers (EFRC) (United States). Revolutionary Materials for Solid State Energy Conversion (RMSSEC)</creatorcontrib><description>Higher manganese silicides (HMS) made of earth‐abundant and non‐toxic elements are regarded as promising p‐type thermoelectric materials because their complex crystal structure results in low lattice thermal conductivity. It is shown here that the already low thermal conductivity of HMS can be reduced further to approach the minimum thermal conductivity via partial substitution of Mn with heavier rhenium (Re) to increase point defect scattering. The solubility limit of Re in the obtained RexMn1‐xSi1.8 is determined to be about x = 0.18. Elemental inhomogeneity and the formation of ReSi1.75 inclusions with 50−200 nm size are found within the HMS matrix. It is found that the power factor does not change markedly at low Re content of x ≤ 0.04 before it drops considerably at higher Re contents. Compared to pure HMS, the reduced lattice thermal conductivity in RexMn1‐xSi1.8 results in a 25% increase of the peak figure of merit ZT to reach 0.57 ± 0.08 at 800 K for x = 0.04. The suppressed thermal conductivity in the pure RexMn1‐xSi1.8 can enable further investigations of the ZT limit of this system by exploring different impurity doping strategies to optimize the carrier concentration and power factor.
The lattice thermal conductivity of higher manganese silicides (HMS) is primarily suppressed by rhenium substitution to approach the calculated minimum lattice thermal conductivity value. This leads to improved thermoelectric performance in the Re‐substituted HMS as compared to pure HMS.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201400452</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>alloys ; Carrier density ; Heat conductivity ; Heat transfer ; Lattices ; Manganese silicide ; nanostructures ; Point defects ; Power factor ; Rhenium ; silicides ; Thermal conductivity ; thermoelectric ; thermoelectric materials ; Thermoelectricity</subject><ispartof>Advanced energy materials, 2014-10, Vol.4 (14), p.np-n/a</ispartof><rights>2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5512-7abc544ca997c854e313e8eb6bbc9ba9f3bbd29455a18dcfa9ecbe3542a78c693</citedby><cites>FETCH-LOGICAL-c5512-7abc544ca997c854e313e8eb6bbc9ba9f3bbd29455a18dcfa9ecbe3542a78c693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201400452$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201400452$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1132985$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Girard, Steven N.</creatorcontrib><creatorcontrib>Meng, Fei</creatorcontrib><creatorcontrib>Lara-Curzio, Edgar</creatorcontrib><creatorcontrib>Jin, Song</creatorcontrib><creatorcontrib>Goodenough, John B.</creatorcontrib><creatorcontrib>Zhou, Jianshi</creatorcontrib><creatorcontrib>Shi, Li</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Revolutionary Materials for Solid State Energy Conversion (RMSSEC)</creatorcontrib><title>Approaching the Minimum Thermal Conductivity in Rhenium-Substituted Higher Manganese Silicides</title><title>Advanced energy materials</title><addtitle>Adv. Energy Mater</addtitle><description>Higher manganese silicides (HMS) made of earth‐abundant and non‐toxic elements are regarded as promising p‐type thermoelectric materials because their complex crystal structure results in low lattice thermal conductivity. It is shown here that the already low thermal conductivity of HMS can be reduced further to approach the minimum thermal conductivity via partial substitution of Mn with heavier rhenium (Re) to increase point defect scattering. The solubility limit of Re in the obtained RexMn1‐xSi1.8 is determined to be about x = 0.18. Elemental inhomogeneity and the formation of ReSi1.75 inclusions with 50−200 nm size are found within the HMS matrix. It is found that the power factor does not change markedly at low Re content of x ≤ 0.04 before it drops considerably at higher Re contents. Compared to pure HMS, the reduced lattice thermal conductivity in RexMn1‐xSi1.8 results in a 25% increase of the peak figure of merit ZT to reach 0.57 ± 0.08 at 800 K for x = 0.04. The suppressed thermal conductivity in the pure RexMn1‐xSi1.8 can enable further investigations of the ZT limit of this system by exploring different impurity doping strategies to optimize the carrier concentration and power factor.
The lattice thermal conductivity of higher manganese silicides (HMS) is primarily suppressed by rhenium substitution to approach the calculated minimum lattice thermal conductivity value. This leads to improved thermoelectric performance in the Re‐substituted HMS as compared to pure HMS.</description><subject>alloys</subject><subject>Carrier density</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Lattices</subject><subject>Manganese silicide</subject><subject>nanostructures</subject><subject>Point defects</subject><subject>Power factor</subject><subject>Rhenium</subject><subject>silicides</subject><subject>Thermal conductivity</subject><subject>thermoelectric</subject><subject>thermoelectric materials</subject><subject>Thermoelectricity</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkcFv0zAUhy0EElPZlbMFFy4pdmzH8bGqRofUjokNccOyndfGI3FK7Az63-MpqEJc8OX58H1P770fQq8pWVJCyvcGQr8sCeWEcFE-Qxe0oryoak6en_-sfIkuY3wg-XFFCWMX6NvqeBwH41ofDji1gHc--H7q8X0LY286vB5CM7nkH306YR_w5xaCn_ribrIx-TQlaPC1P2Qa70w4mAAR8J3vvPMNxFfoxd50ES7_1AX68uHqfn1dbD9tPq5X28IJQctCGusE584oJV0tODDKoAZbWeuUNWrPrG1KxYUwtG7c3ihwFpjgpZG1qxRboDdz3yEPpaPzCVzrhhDAJU0pK1UtMvRuhvLGPyaISfc-Oui6PPQwRU2lJEySmsqMvv0HfRimMeQVNK0I47Wg-X4LtJwpNw4xjrDXx9H3ZjxpSvRTLPopFn2OJQtqFn76Dk7_ofXq6mb3t1vMro8Jfp1dM37XlWRS6K83G00Zub1Vm63m7DdbsKBB</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Chen, Xi</creator><creator>Girard, Steven N.</creator><creator>Meng, Fei</creator><creator>Lara-Curzio, Edgar</creator><creator>Jin, Song</creator><creator>Goodenough, John B.</creator><creator>Zhou, Jianshi</creator><creator>Shi, Li</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20141001</creationdate><title>Approaching the Minimum Thermal Conductivity in Rhenium-Substituted Higher Manganese Silicides</title><author>Chen, Xi ; Girard, Steven N. ; Meng, Fei ; Lara-Curzio, Edgar ; Jin, Song ; Goodenough, John B. ; Zhou, Jianshi ; Shi, Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5512-7abc544ca997c854e313e8eb6bbc9ba9f3bbd29455a18dcfa9ecbe3542a78c693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>alloys</topic><topic>Carrier density</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Lattices</topic><topic>Manganese silicide</topic><topic>nanostructures</topic><topic>Point defects</topic><topic>Power factor</topic><topic>Rhenium</topic><topic>silicides</topic><topic>Thermal conductivity</topic><topic>thermoelectric</topic><topic>thermoelectric materials</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xi</creatorcontrib><creatorcontrib>Girard, Steven N.</creatorcontrib><creatorcontrib>Meng, Fei</creatorcontrib><creatorcontrib>Lara-Curzio, Edgar</creatorcontrib><creatorcontrib>Jin, Song</creatorcontrib><creatorcontrib>Goodenough, John B.</creatorcontrib><creatorcontrib>Zhou, Jianshi</creatorcontrib><creatorcontrib>Shi, Li</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Revolutionary Materials for Solid State Energy Conversion (RMSSEC)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xi</au><au>Girard, Steven N.</au><au>Meng, Fei</au><au>Lara-Curzio, Edgar</au><au>Jin, Song</au><au>Goodenough, John B.</au><au>Zhou, Jianshi</au><au>Shi, Li</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Revolutionary Materials for Solid State Energy Conversion (RMSSEC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approaching the Minimum Thermal Conductivity in Rhenium-Substituted Higher Manganese Silicides</atitle><jtitle>Advanced energy materials</jtitle><addtitle>Adv. Energy Mater</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>4</volume><issue>14</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Higher manganese silicides (HMS) made of earth‐abundant and non‐toxic elements are regarded as promising p‐type thermoelectric materials because their complex crystal structure results in low lattice thermal conductivity. It is shown here that the already low thermal conductivity of HMS can be reduced further to approach the minimum thermal conductivity via partial substitution of Mn with heavier rhenium (Re) to increase point defect scattering. The solubility limit of Re in the obtained RexMn1‐xSi1.8 is determined to be about x = 0.18. Elemental inhomogeneity and the formation of ReSi1.75 inclusions with 50−200 nm size are found within the HMS matrix. It is found that the power factor does not change markedly at low Re content of x ≤ 0.04 before it drops considerably at higher Re contents. Compared to pure HMS, the reduced lattice thermal conductivity in RexMn1‐xSi1.8 results in a 25% increase of the peak figure of merit ZT to reach 0.57 ± 0.08 at 800 K for x = 0.04. The suppressed thermal conductivity in the pure RexMn1‐xSi1.8 can enable further investigations of the ZT limit of this system by exploring different impurity doping strategies to optimize the carrier concentration and power factor.
The lattice thermal conductivity of higher manganese silicides (HMS) is primarily suppressed by rhenium substitution to approach the calculated minimum lattice thermal conductivity value. This leads to improved thermoelectric performance in the Re‐substituted HMS as compared to pure HMS.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aenm.201400452</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2014-10, Vol.4 (14), p.np-n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_osti_scitechconnect_1132985 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | alloys Carrier density Heat conductivity Heat transfer Lattices Manganese silicide nanostructures Point defects Power factor Rhenium silicides Thermal conductivity thermoelectric thermoelectric materials Thermoelectricity |
title | Approaching the Minimum Thermal Conductivity in Rhenium-Substituted Higher Manganese Silicides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A51%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approaching%20the%20Minimum%20Thermal%20Conductivity%20in%20Rhenium-Substituted%20Higher%20Manganese%20Silicides&rft.jtitle=Advanced%20energy%20materials&rft.au=Chen,%20Xi&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2014-10-01&rft.volume=4&rft.issue=14&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201400452&rft_dat=%3Cproquest_osti_%3E3453198641%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1603485110&rft_id=info:pmid/&rfr_iscdi=true |