Selective Ionic Transport through Tunable Subnanometer Pores in Single-Layer Graphene Membranes

We report selective ionic transport through controlled, high-density, subnanometer diameter pores in macroscopic single-layer graphene membranes. Isolated, reactive defects were first introduced into the graphene lattice through ion bombardment and subsequently enlarged by oxidative etching into per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2014-03, Vol.14 (3), p.1234-1241
Hauptverfasser: O’Hern, Sean C, Boutilier, Michael S. H, Idrobo, Juan-Carlos, Song, Yi, Kong, Jing, Laoui, Tahar, Atieh, Muataz, Karnik, Rohit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1241
container_issue 3
container_start_page 1234
container_title Nano letters
container_volume 14
creator O’Hern, Sean C
Boutilier, Michael S. H
Idrobo, Juan-Carlos
Song, Yi
Kong, Jing
Laoui, Tahar
Atieh, Muataz
Karnik, Rohit
description We report selective ionic transport through controlled, high-density, subnanometer diameter pores in macroscopic single-layer graphene membranes. Isolated, reactive defects were first introduced into the graphene lattice through ion bombardment and subsequently enlarged by oxidative etching into permeable pores with diameters of 0.40 ± 0.24 nm and densities exceeding 1012 cm–2, while retaining structural integrity of the graphene. Transport measurements across ion-irradiated graphene membranes subjected to in situ etching revealed that the created pores were cation-selective at short oxidation times, consistent with electrostatic repulsion from negatively charged functional groups terminating the pore edges. At longer oxidation times, the pores allowed transport of salt but prevented the transport of a larger organic molecule, indicative of steric size exclusion. The ability to tune the selectivity of graphene through controlled generation of subnanometer pores addresses a significant challenge in the development of advanced nanoporous graphene membranes for nanofiltration, desalination, gas separation, and other applications.
doi_str_mv 10.1021/nl404118f
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1130836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1507190139</sourcerecordid><originalsourceid>FETCH-LOGICAL-a506t-4cf9e2ac99296000b8d5e7327575d55d04c175a1c27da37cdbe6f0fb3a6a43783</originalsourceid><addsrcrecordid>eNqFkU9r3DAQxUVpaf60h36BIgqF9uB2ZEmWdSyhTQJbUtjtWcjyOKtgS1vJLuTbR2G3m0shpxGjH2_ezCPkHYMvDGr2NYwCBGPt8IKcMsmharSuXx7frTghZznfAYDmEl6Tk1oIDeXjlJg1juhm_xfpdQze0U2yIe9imum8TXG53dLNEmw3Il0vXbAhTjhjor9iwkx9oGsfbkesVva-dC-T3W0xIP2JU1eEML8hrwY7Znx7qOfk94_vm4uranVzeX3xbVVZCc1cCTdorK0rvnVTfHZtL1HxWkkleyl7EI4paZmrVW-5cn2HzQBDx21jBVctPycf9roxz95k52d0WxdDKMsZxji0vCnQpz20S_HPgnk2k88Ox7E4jUs2ZQQXLW-hfR6VoJgGxnVBP-9Rl2LOCQezS36y6d4wMI_5mGM-hX1_kF26Cfsj-S-QAnw8ADY7Ow7liM7nJ66sUWutnjjrsrmLSwrluv8Z-ACW06LP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507190139</pqid></control><display><type>article</type><title>Selective Ionic Transport through Tunable Subnanometer Pores in Single-Layer Graphene Membranes</title><source>ACS Publications</source><creator>O’Hern, Sean C ; Boutilier, Michael S. H ; Idrobo, Juan-Carlos ; Song, Yi ; Kong, Jing ; Laoui, Tahar ; Atieh, Muataz ; Karnik, Rohit</creator><creatorcontrib>O’Hern, Sean C ; Boutilier, Michael S. H ; Idrobo, Juan-Carlos ; Song, Yi ; Kong, Jing ; Laoui, Tahar ; Atieh, Muataz ; Karnik, Rohit ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><description>We report selective ionic transport through controlled, high-density, subnanometer diameter pores in macroscopic single-layer graphene membranes. Isolated, reactive defects were first introduced into the graphene lattice through ion bombardment and subsequently enlarged by oxidative etching into permeable pores with diameters of 0.40 ± 0.24 nm and densities exceeding 1012 cm–2, while retaining structural integrity of the graphene. Transport measurements across ion-irradiated graphene membranes subjected to in situ etching revealed that the created pores were cation-selective at short oxidation times, consistent with electrostatic repulsion from negatively charged functional groups terminating the pore edges. At longer oxidation times, the pores allowed transport of salt but prevented the transport of a larger organic molecule, indicative of steric size exclusion. The ability to tune the selectivity of graphene through controlled generation of subnanometer pores addresses a significant challenge in the development of advanced nanoporous graphene membranes for nanofiltration, desalination, gas separation, and other applications.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl404118f</identifier><identifier>PMID: 24490698</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Density ; Etching ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Graphene ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials science ; Membranes ; Nanocrystalline materials ; Nanostructure ; Oxidation ; Physics ; Porosity ; Radiation effects on specific materials ; Specific materials ; STEM ; Structure of solids and liquids; crystallography ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Transport</subject><ispartof>Nano letters, 2014-03, Vol.14 (3), p.1234-1241</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a506t-4cf9e2ac99296000b8d5e7327575d55d04c175a1c27da37cdbe6f0fb3a6a43783</citedby><cites>FETCH-LOGICAL-a506t-4cf9e2ac99296000b8d5e7327575d55d04c175a1c27da37cdbe6f0fb3a6a43783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl404118f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl404118f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28362997$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24490698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1130836$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>O’Hern, Sean C</creatorcontrib><creatorcontrib>Boutilier, Michael S. H</creatorcontrib><creatorcontrib>Idrobo, Juan-Carlos</creatorcontrib><creatorcontrib>Song, Yi</creatorcontrib><creatorcontrib>Kong, Jing</creatorcontrib><creatorcontrib>Laoui, Tahar</creatorcontrib><creatorcontrib>Atieh, Muataz</creatorcontrib><creatorcontrib>Karnik, Rohit</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><title>Selective Ionic Transport through Tunable Subnanometer Pores in Single-Layer Graphene Membranes</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We report selective ionic transport through controlled, high-density, subnanometer diameter pores in macroscopic single-layer graphene membranes. Isolated, reactive defects were first introduced into the graphene lattice through ion bombardment and subsequently enlarged by oxidative etching into permeable pores with diameters of 0.40 ± 0.24 nm and densities exceeding 1012 cm–2, while retaining structural integrity of the graphene. Transport measurements across ion-irradiated graphene membranes subjected to in situ etching revealed that the created pores were cation-selective at short oxidation times, consistent with electrostatic repulsion from negatively charged functional groups terminating the pore edges. At longer oxidation times, the pores allowed transport of salt but prevented the transport of a larger organic molecule, indicative of steric size exclusion. The ability to tune the selectivity of graphene through controlled generation of subnanometer pores addresses a significant challenge in the development of advanced nanoporous graphene membranes for nanofiltration, desalination, gas separation, and other applications.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Density</subject><subject>Etching</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Graphene</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials science</subject><subject>Membranes</subject><subject>Nanocrystalline materials</subject><subject>Nanostructure</subject><subject>Oxidation</subject><subject>Physics</subject><subject>Porosity</subject><subject>Radiation effects on specific materials</subject><subject>Specific materials</subject><subject>STEM</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Transport</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkU9r3DAQxUVpaf60h36BIgqF9uB2ZEmWdSyhTQJbUtjtWcjyOKtgS1vJLuTbR2G3m0shpxGjH2_ezCPkHYMvDGr2NYwCBGPt8IKcMsmharSuXx7frTghZznfAYDmEl6Tk1oIDeXjlJg1juhm_xfpdQze0U2yIe9imum8TXG53dLNEmw3Il0vXbAhTjhjor9iwkx9oGsfbkesVva-dC-T3W0xIP2JU1eEML8hrwY7Znx7qOfk94_vm4uranVzeX3xbVVZCc1cCTdorK0rvnVTfHZtL1HxWkkleyl7EI4paZmrVW-5cn2HzQBDx21jBVctPycf9roxz95k52d0WxdDKMsZxji0vCnQpz20S_HPgnk2k88Ox7E4jUs2ZQQXLW-hfR6VoJgGxnVBP-9Rl2LOCQezS36y6d4wMI_5mGM-hX1_kF26Cfsj-S-QAnw8ADY7Ow7liM7nJ66sUWutnjjrsrmLSwrluv8Z-ACW06LP</recordid><startdate>20140312</startdate><enddate>20140312</enddate><creator>O’Hern, Sean C</creator><creator>Boutilier, Michael S. H</creator><creator>Idrobo, Juan-Carlos</creator><creator>Song, Yi</creator><creator>Kong, Jing</creator><creator>Laoui, Tahar</creator><creator>Atieh, Muataz</creator><creator>Karnik, Rohit</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140312</creationdate><title>Selective Ionic Transport through Tunable Subnanometer Pores in Single-Layer Graphene Membranes</title><author>O’Hern, Sean C ; Boutilier, Michael S. H ; Idrobo, Juan-Carlos ; Song, Yi ; Kong, Jing ; Laoui, Tahar ; Atieh, Muataz ; Karnik, Rohit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a506t-4cf9e2ac99296000b8d5e7327575d55d04c175a1c27da37cdbe6f0fb3a6a43783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Density</topic><topic>Etching</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Graphene</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials science</topic><topic>Membranes</topic><topic>Nanocrystalline materials</topic><topic>Nanostructure</topic><topic>Oxidation</topic><topic>Physics</topic><topic>Porosity</topic><topic>Radiation effects on specific materials</topic><topic>Specific materials</topic><topic>STEM</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O’Hern, Sean C</creatorcontrib><creatorcontrib>Boutilier, Michael S. H</creatorcontrib><creatorcontrib>Idrobo, Juan-Carlos</creatorcontrib><creatorcontrib>Song, Yi</creatorcontrib><creatorcontrib>Kong, Jing</creatorcontrib><creatorcontrib>Laoui, Tahar</creatorcontrib><creatorcontrib>Atieh, Muataz</creatorcontrib><creatorcontrib>Karnik, Rohit</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O’Hern, Sean C</au><au>Boutilier, Michael S. H</au><au>Idrobo, Juan-Carlos</au><au>Song, Yi</au><au>Kong, Jing</au><au>Laoui, Tahar</au><au>Atieh, Muataz</au><au>Karnik, Rohit</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Center for Nanophase Materials Sciences (CNMS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective Ionic Transport through Tunable Subnanometer Pores in Single-Layer Graphene Membranes</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2014-03-12</date><risdate>2014</risdate><volume>14</volume><issue>3</issue><spage>1234</spage><epage>1241</epage><pages>1234-1241</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We report selective ionic transport through controlled, high-density, subnanometer diameter pores in macroscopic single-layer graphene membranes. Isolated, reactive defects were first introduced into the graphene lattice through ion bombardment and subsequently enlarged by oxidative etching into permeable pores with diameters of 0.40 ± 0.24 nm and densities exceeding 1012 cm–2, while retaining structural integrity of the graphene. Transport measurements across ion-irradiated graphene membranes subjected to in situ etching revealed that the created pores were cation-selective at short oxidation times, consistent with electrostatic repulsion from negatively charged functional groups terminating the pore edges. At longer oxidation times, the pores allowed transport of salt but prevented the transport of a larger organic molecule, indicative of steric size exclusion. The ability to tune the selectivity of graphene through controlled generation of subnanometer pores addresses a significant challenge in the development of advanced nanoporous graphene membranes for nanofiltration, desalination, gas separation, and other applications.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24490698</pmid><doi>10.1021/nl404118f</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2014-03, Vol.14 (3), p.1234-1241
issn 1530-6984
1530-6992
language eng
recordid cdi_osti_scitechconnect_1130836
source ACS Publications
subjects Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Density
Etching
Exact sciences and technology
Fullerenes and related materials
diamonds, graphite
Graphene
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Materials science
Membranes
Nanocrystalline materials
Nanostructure
Oxidation
Physics
Porosity
Radiation effects on specific materials
Specific materials
STEM
Structure of solids and liquids
crystallography
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Transport
title Selective Ionic Transport through Tunable Subnanometer Pores in Single-Layer Graphene Membranes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A14%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20Ionic%20Transport%20through%20Tunable%20Subnanometer%20Pores%20in%20Single-Layer%20Graphene%20Membranes&rft.jtitle=Nano%20letters&rft.au=O%E2%80%99Hern,%20Sean%20C&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2014-03-12&rft.volume=14&rft.issue=3&rft.spage=1234&rft.epage=1241&rft.pages=1234-1241&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl404118f&rft_dat=%3Cproquest_osti_%3E1507190139%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1507190139&rft_id=info:pmid/24490698&rfr_iscdi=true