Selective Ionic Transport through Tunable Subnanometer Pores in Single-Layer Graphene Membranes
We report selective ionic transport through controlled, high-density, subnanometer diameter pores in macroscopic single-layer graphene membranes. Isolated, reactive defects were first introduced into the graphene lattice through ion bombardment and subsequently enlarged by oxidative etching into per...
Gespeichert in:
Veröffentlicht in: | Nano letters 2014-03, Vol.14 (3), p.1234-1241 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1241 |
---|---|
container_issue | 3 |
container_start_page | 1234 |
container_title | Nano letters |
container_volume | 14 |
creator | O’Hern, Sean C Boutilier, Michael S. H Idrobo, Juan-Carlos Song, Yi Kong, Jing Laoui, Tahar Atieh, Muataz Karnik, Rohit |
description | We report selective ionic transport through controlled, high-density, subnanometer diameter pores in macroscopic single-layer graphene membranes. Isolated, reactive defects were first introduced into the graphene lattice through ion bombardment and subsequently enlarged by oxidative etching into permeable pores with diameters of 0.40 ± 0.24 nm and densities exceeding 1012 cm–2, while retaining structural integrity of the graphene. Transport measurements across ion-irradiated graphene membranes subjected to in situ etching revealed that the created pores were cation-selective at short oxidation times, consistent with electrostatic repulsion from negatively charged functional groups terminating the pore edges. At longer oxidation times, the pores allowed transport of salt but prevented the transport of a larger organic molecule, indicative of steric size exclusion. The ability to tune the selectivity of graphene through controlled generation of subnanometer pores addresses a significant challenge in the development of advanced nanoporous graphene membranes for nanofiltration, desalination, gas separation, and other applications. |
doi_str_mv | 10.1021/nl404118f |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1130836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1507190139</sourcerecordid><originalsourceid>FETCH-LOGICAL-a506t-4cf9e2ac99296000b8d5e7327575d55d04c175a1c27da37cdbe6f0fb3a6a43783</originalsourceid><addsrcrecordid>eNqFkU9r3DAQxUVpaf60h36BIgqF9uB2ZEmWdSyhTQJbUtjtWcjyOKtgS1vJLuTbR2G3m0shpxGjH2_ezCPkHYMvDGr2NYwCBGPt8IKcMsmharSuXx7frTghZznfAYDmEl6Tk1oIDeXjlJg1juhm_xfpdQze0U2yIe9imum8TXG53dLNEmw3Il0vXbAhTjhjor9iwkx9oGsfbkesVva-dC-T3W0xIP2JU1eEML8hrwY7Znx7qOfk94_vm4uranVzeX3xbVVZCc1cCTdorK0rvnVTfHZtL1HxWkkleyl7EI4paZmrVW-5cn2HzQBDx21jBVctPycf9roxz95k52d0WxdDKMsZxji0vCnQpz20S_HPgnk2k88Ox7E4jUs2ZQQXLW-hfR6VoJgGxnVBP-9Rl2LOCQezS36y6d4wMI_5mGM-hX1_kF26Cfsj-S-QAnw8ADY7Ow7liM7nJ66sUWutnjjrsrmLSwrluv8Z-ACW06LP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507190139</pqid></control><display><type>article</type><title>Selective Ionic Transport through Tunable Subnanometer Pores in Single-Layer Graphene Membranes</title><source>ACS Publications</source><creator>O’Hern, Sean C ; Boutilier, Michael S. H ; Idrobo, Juan-Carlos ; Song, Yi ; Kong, Jing ; Laoui, Tahar ; Atieh, Muataz ; Karnik, Rohit</creator><creatorcontrib>O’Hern, Sean C ; Boutilier, Michael S. H ; Idrobo, Juan-Carlos ; Song, Yi ; Kong, Jing ; Laoui, Tahar ; Atieh, Muataz ; Karnik, Rohit ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><description>We report selective ionic transport through controlled, high-density, subnanometer diameter pores in macroscopic single-layer graphene membranes. Isolated, reactive defects were first introduced into the graphene lattice through ion bombardment and subsequently enlarged by oxidative etching into permeable pores with diameters of 0.40 ± 0.24 nm and densities exceeding 1012 cm–2, while retaining structural integrity of the graphene. Transport measurements across ion-irradiated graphene membranes subjected to in situ etching revealed that the created pores were cation-selective at short oxidation times, consistent with electrostatic repulsion from negatively charged functional groups terminating the pore edges. At longer oxidation times, the pores allowed transport of salt but prevented the transport of a larger organic molecule, indicative of steric size exclusion. The ability to tune the selectivity of graphene through controlled generation of subnanometer pores addresses a significant challenge in the development of advanced nanoporous graphene membranes for nanofiltration, desalination, gas separation, and other applications.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl404118f</identifier><identifier>PMID: 24490698</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Density ; Etching ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Graphene ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials science ; Membranes ; Nanocrystalline materials ; Nanostructure ; Oxidation ; Physics ; Porosity ; Radiation effects on specific materials ; Specific materials ; STEM ; Structure of solids and liquids; crystallography ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Transport</subject><ispartof>Nano letters, 2014-03, Vol.14 (3), p.1234-1241</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a506t-4cf9e2ac99296000b8d5e7327575d55d04c175a1c27da37cdbe6f0fb3a6a43783</citedby><cites>FETCH-LOGICAL-a506t-4cf9e2ac99296000b8d5e7327575d55d04c175a1c27da37cdbe6f0fb3a6a43783</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl404118f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl404118f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28362997$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24490698$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1130836$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>O’Hern, Sean C</creatorcontrib><creatorcontrib>Boutilier, Michael S. H</creatorcontrib><creatorcontrib>Idrobo, Juan-Carlos</creatorcontrib><creatorcontrib>Song, Yi</creatorcontrib><creatorcontrib>Kong, Jing</creatorcontrib><creatorcontrib>Laoui, Tahar</creatorcontrib><creatorcontrib>Atieh, Muataz</creatorcontrib><creatorcontrib>Karnik, Rohit</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><title>Selective Ionic Transport through Tunable Subnanometer Pores in Single-Layer Graphene Membranes</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We report selective ionic transport through controlled, high-density, subnanometer diameter pores in macroscopic single-layer graphene membranes. Isolated, reactive defects were first introduced into the graphene lattice through ion bombardment and subsequently enlarged by oxidative etching into permeable pores with diameters of 0.40 ± 0.24 nm and densities exceeding 1012 cm–2, while retaining structural integrity of the graphene. Transport measurements across ion-irradiated graphene membranes subjected to in situ etching revealed that the created pores were cation-selective at short oxidation times, consistent with electrostatic repulsion from negatively charged functional groups terminating the pore edges. At longer oxidation times, the pores allowed transport of salt but prevented the transport of a larger organic molecule, indicative of steric size exclusion. The ability to tune the selectivity of graphene through controlled generation of subnanometer pores addresses a significant challenge in the development of advanced nanoporous graphene membranes for nanofiltration, desalination, gas separation, and other applications.</description><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Density</subject><subject>Etching</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Graphene</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials science</subject><subject>Membranes</subject><subject>Nanocrystalline materials</subject><subject>Nanostructure</subject><subject>Oxidation</subject><subject>Physics</subject><subject>Porosity</subject><subject>Radiation effects on specific materials</subject><subject>Specific materials</subject><subject>STEM</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Transport</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkU9r3DAQxUVpaf60h36BIgqF9uB2ZEmWdSyhTQJbUtjtWcjyOKtgS1vJLuTbR2G3m0shpxGjH2_ezCPkHYMvDGr2NYwCBGPt8IKcMsmharSuXx7frTghZznfAYDmEl6Tk1oIDeXjlJg1juhm_xfpdQze0U2yIe9imum8TXG53dLNEmw3Il0vXbAhTjhjor9iwkx9oGsfbkesVva-dC-T3W0xIP2JU1eEML8hrwY7Znx7qOfk94_vm4uranVzeX3xbVVZCc1cCTdorK0rvnVTfHZtL1HxWkkleyl7EI4paZmrVW-5cn2HzQBDx21jBVctPycf9roxz95k52d0WxdDKMsZxji0vCnQpz20S_HPgnk2k88Ox7E4jUs2ZQQXLW-hfR6VoJgGxnVBP-9Rl2LOCQezS36y6d4wMI_5mGM-hX1_kF26Cfsj-S-QAnw8ADY7Ow7liM7nJ66sUWutnjjrsrmLSwrluv8Z-ACW06LP</recordid><startdate>20140312</startdate><enddate>20140312</enddate><creator>O’Hern, Sean C</creator><creator>Boutilier, Michael S. H</creator><creator>Idrobo, Juan-Carlos</creator><creator>Song, Yi</creator><creator>Kong, Jing</creator><creator>Laoui, Tahar</creator><creator>Atieh, Muataz</creator><creator>Karnik, Rohit</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140312</creationdate><title>Selective Ionic Transport through Tunable Subnanometer Pores in Single-Layer Graphene Membranes</title><author>O’Hern, Sean C ; Boutilier, Michael S. H ; Idrobo, Juan-Carlos ; Song, Yi ; Kong, Jing ; Laoui, Tahar ; Atieh, Muataz ; Karnik, Rohit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a506t-4cf9e2ac99296000b8d5e7327575d55d04c175a1c27da37cdbe6f0fb3a6a43783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Density</topic><topic>Etching</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Graphene</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials science</topic><topic>Membranes</topic><topic>Nanocrystalline materials</topic><topic>Nanostructure</topic><topic>Oxidation</topic><topic>Physics</topic><topic>Porosity</topic><topic>Radiation effects on specific materials</topic><topic>Specific materials</topic><topic>STEM</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O’Hern, Sean C</creatorcontrib><creatorcontrib>Boutilier, Michael S. H</creatorcontrib><creatorcontrib>Idrobo, Juan-Carlos</creatorcontrib><creatorcontrib>Song, Yi</creatorcontrib><creatorcontrib>Kong, Jing</creatorcontrib><creatorcontrib>Laoui, Tahar</creatorcontrib><creatorcontrib>Atieh, Muataz</creatorcontrib><creatorcontrib>Karnik, Rohit</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O’Hern, Sean C</au><au>Boutilier, Michael S. H</au><au>Idrobo, Juan-Carlos</au><au>Song, Yi</au><au>Kong, Jing</au><au>Laoui, Tahar</au><au>Atieh, Muataz</au><au>Karnik, Rohit</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Center for Nanophase Materials Sciences (CNMS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective Ionic Transport through Tunable Subnanometer Pores in Single-Layer Graphene Membranes</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2014-03-12</date><risdate>2014</risdate><volume>14</volume><issue>3</issue><spage>1234</spage><epage>1241</epage><pages>1234-1241</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We report selective ionic transport through controlled, high-density, subnanometer diameter pores in macroscopic single-layer graphene membranes. Isolated, reactive defects were first introduced into the graphene lattice through ion bombardment and subsequently enlarged by oxidative etching into permeable pores with diameters of 0.40 ± 0.24 nm and densities exceeding 1012 cm–2, while retaining structural integrity of the graphene. Transport measurements across ion-irradiated graphene membranes subjected to in situ etching revealed that the created pores were cation-selective at short oxidation times, consistent with electrostatic repulsion from negatively charged functional groups terminating the pore edges. At longer oxidation times, the pores allowed transport of salt but prevented the transport of a larger organic molecule, indicative of steric size exclusion. The ability to tune the selectivity of graphene through controlled generation of subnanometer pores addresses a significant challenge in the development of advanced nanoporous graphene membranes for nanofiltration, desalination, gas separation, and other applications.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24490698</pmid><doi>10.1021/nl404118f</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2014-03, Vol.14 (3), p.1234-1241 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_osti_scitechconnect_1130836 |
source | ACS Publications |
subjects | Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Density Etching Exact sciences and technology Fullerenes and related materials diamonds, graphite Graphene Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties Materials science Membranes Nanocrystalline materials Nanostructure Oxidation Physics Porosity Radiation effects on specific materials Specific materials STEM Structure of solids and liquids crystallography Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Transport |
title | Selective Ionic Transport through Tunable Subnanometer Pores in Single-Layer Graphene Membranes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A14%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20Ionic%20Transport%20through%20Tunable%20Subnanometer%20Pores%20in%20Single-Layer%20Graphene%20Membranes&rft.jtitle=Nano%20letters&rft.au=O%E2%80%99Hern,%20Sean%20C&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2014-03-12&rft.volume=14&rft.issue=3&rft.spage=1234&rft.epage=1241&rft.pages=1234-1241&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl404118f&rft_dat=%3Cproquest_osti_%3E1507190139%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1507190139&rft_id=info:pmid/24490698&rfr_iscdi=true |