Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2

Plasmonic excitation of Au nanoparticles attached to the surface of ZnO catalysts using low power 532 nm laser illumination leads to significant heating of the catalyst and the conversion of CO2 and H2 reactants to CH4 and CO products. Temperature-calibrated Raman spectra of ZnO phonons show that in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2013-01, Vol.5 (15), p.6968-6974
Hauptverfasser: Wang, Congjun, Ranasingha, Oshadha, Natesakhawat, Sittichai, Ohodnicki, Jr, Paul R, Andio, Mark, Lewis, James P, Matranga, Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6974
container_issue 15
container_start_page 6968
container_title Nanoscale
container_volume 5
creator Wang, Congjun
Ranasingha, Oshadha
Natesakhawat, Sittichai
Ohodnicki, Jr, Paul R
Andio, Mark
Lewis, James P
Matranga, Christopher
description Plasmonic excitation of Au nanoparticles attached to the surface of ZnO catalysts using low power 532 nm laser illumination leads to significant heating of the catalyst and the conversion of CO2 and H2 reactants to CH4 and CO products. Temperature-calibrated Raman spectra of ZnO phonons show that intensity-dependent plasmonic excitation can controllably heat Au-ZnO from 30 to ~600 °C and simultaneously tune the CH4 : CO product ratio. The laser induced heating and resulting CH4 : CO product distribution agrees well with predictions from thermodynamic models and temperature-programmed reaction experiments indicating that the reaction is a thermally driven process resulting from the plasmonic heating of the Au-ZnO. The apparent quantum yield for CO2 conversion under continuous wave (cw) 532 nm laser illumination is 0.030%. The Au-ZnO catalysts are robust and remain active after repeated laser exposure and cycling. The light intensity required to initiate CO2 reduction is low (~2.5 × 10(5) W m(-2)) and achievable with solar concentrators. Our results illustrate the viability of plasmonic heating approaches for CO2 utilization and other practical thermal catalytic applications.
doi_str_mv 10.1039/c3nr02001k
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1129493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1399933564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-c97203c678aee85ba85a9d8aa0a786ead229c8adb7af3a6c63bc4b0d3799ae743</originalsourceid><addsrcrecordid>eNpF0L1OwzAUBWALgWgpLDwAspgQUsCxEyceq4o_qVIXYGCxbhynMSR2sZ2hb0-qQpnuHT4dHR2ELlNylxIm7hWznlBC0q8jNKUkIwljBT0-_DyboLMQPgnhgnF2iiaUFSIjNJ-i5bsJpuo07sy6jXjTQeidNQq3GqKxa-waPB-SD7vCjfM4thoriNBt42i8rgcVjbM7tVjRc3TSQBf0xe-dobfHh9fFc7JcPb0s5stEsZzERImCEqZ4UYLWZV5BmYOoSwACRck11JQKVUJdFdAw4IqzSmUVqcfSAnSRsRm63ue6EI0MykStWuWs1SrKNKUiE2xEN3u08e570CHK3gSluw6sdkOQKRNiZDnf5d3uqfIuBK8bufGmB7-VKZG7ieX_xCO--s0dql7XB_q3KfsB8iZ2Gw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1399933564</pqid></control><display><type>article</type><title>Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Congjun ; Ranasingha, Oshadha ; Natesakhawat, Sittichai ; Ohodnicki, Jr, Paul R ; Andio, Mark ; Lewis, James P ; Matranga, Christopher</creator><creatorcontrib>Wang, Congjun ; Ranasingha, Oshadha ; Natesakhawat, Sittichai ; Ohodnicki, Jr, Paul R ; Andio, Mark ; Lewis, James P ; Matranga, Christopher ; National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). In-house Research</creatorcontrib><description>Plasmonic excitation of Au nanoparticles attached to the surface of ZnO catalysts using low power 532 nm laser illumination leads to significant heating of the catalyst and the conversion of CO2 and H2 reactants to CH4 and CO products. Temperature-calibrated Raman spectra of ZnO phonons show that intensity-dependent plasmonic excitation can controllably heat Au-ZnO from 30 to ~600 °C and simultaneously tune the CH4 : CO product ratio. The laser induced heating and resulting CH4 : CO product distribution agrees well with predictions from thermodynamic models and temperature-programmed reaction experiments indicating that the reaction is a thermally driven process resulting from the plasmonic heating of the Au-ZnO. The apparent quantum yield for CO2 conversion under continuous wave (cw) 532 nm laser illumination is 0.030%. The Au-ZnO catalysts are robust and remain active after repeated laser exposure and cycling. The light intensity required to initiate CO2 reduction is low (~2.5 × 10(5) W m(-2)) and achievable with solar concentrators. Our results illustrate the viability of plasmonic heating approaches for CO2 utilization and other practical thermal catalytic applications.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c3nr02001k</identifier><identifier>PMID: 23794025</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>NANOSCIENCE AND NANOTECHNOLOGY ; plasmonic catalysts, photocatalysis, CO2 reduction, Au nanocrystals</subject><ispartof>Nanoscale, 2013-01, Vol.5 (15), p.6968-6974</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-c97203c678aee85ba85a9d8aa0a786ead229c8adb7af3a6c63bc4b0d3799ae743</citedby><cites>FETCH-LOGICAL-c350t-c97203c678aee85ba85a9d8aa0a786ead229c8adb7af3a6c63bc4b0d3799ae743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23794025$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1129493$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Congjun</creatorcontrib><creatorcontrib>Ranasingha, Oshadha</creatorcontrib><creatorcontrib>Natesakhawat, Sittichai</creatorcontrib><creatorcontrib>Ohodnicki, Jr, Paul R</creatorcontrib><creatorcontrib>Andio, Mark</creatorcontrib><creatorcontrib>Lewis, James P</creatorcontrib><creatorcontrib>Matranga, Christopher</creatorcontrib><creatorcontrib>National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). In-house Research</creatorcontrib><title>Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Plasmonic excitation of Au nanoparticles attached to the surface of ZnO catalysts using low power 532 nm laser illumination leads to significant heating of the catalyst and the conversion of CO2 and H2 reactants to CH4 and CO products. Temperature-calibrated Raman spectra of ZnO phonons show that intensity-dependent plasmonic excitation can controllably heat Au-ZnO from 30 to ~600 °C and simultaneously tune the CH4 : CO product ratio. The laser induced heating and resulting CH4 : CO product distribution agrees well with predictions from thermodynamic models and temperature-programmed reaction experiments indicating that the reaction is a thermally driven process resulting from the plasmonic heating of the Au-ZnO. The apparent quantum yield for CO2 conversion under continuous wave (cw) 532 nm laser illumination is 0.030%. The Au-ZnO catalysts are robust and remain active after repeated laser exposure and cycling. The light intensity required to initiate CO2 reduction is low (~2.5 × 10(5) W m(-2)) and achievable with solar concentrators. Our results illustrate the viability of plasmonic heating approaches for CO2 utilization and other practical thermal catalytic applications.</description><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>plasmonic catalysts, photocatalysis, CO2 reduction, Au nanocrystals</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpF0L1OwzAUBWALgWgpLDwAspgQUsCxEyceq4o_qVIXYGCxbhynMSR2sZ2hb0-qQpnuHT4dHR2ELlNylxIm7hWznlBC0q8jNKUkIwljBT0-_DyboLMQPgnhgnF2iiaUFSIjNJ-i5bsJpuo07sy6jXjTQeidNQq3GqKxa-waPB-SD7vCjfM4thoriNBt42i8rgcVjbM7tVjRc3TSQBf0xe-dobfHh9fFc7JcPb0s5stEsZzERImCEqZ4UYLWZV5BmYOoSwACRck11JQKVUJdFdAw4IqzSmUVqcfSAnSRsRm63ue6EI0MykStWuWs1SrKNKUiE2xEN3u08e570CHK3gSluw6sdkOQKRNiZDnf5d3uqfIuBK8bufGmB7-VKZG7ieX_xCO--s0dql7XB_q3KfsB8iZ2Gw</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Wang, Congjun</creator><creator>Ranasingha, Oshadha</creator><creator>Natesakhawat, Sittichai</creator><creator>Ohodnicki, Jr, Paul R</creator><creator>Andio, Mark</creator><creator>Lewis, James P</creator><creator>Matranga, Christopher</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20130101</creationdate><title>Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2</title><author>Wang, Congjun ; Ranasingha, Oshadha ; Natesakhawat, Sittichai ; Ohodnicki, Jr, Paul R ; Andio, Mark ; Lewis, James P ; Matranga, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-c97203c678aee85ba85a9d8aa0a786ead229c8adb7af3a6c63bc4b0d3799ae743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>plasmonic catalysts, photocatalysis, CO2 reduction, Au nanocrystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Congjun</creatorcontrib><creatorcontrib>Ranasingha, Oshadha</creatorcontrib><creatorcontrib>Natesakhawat, Sittichai</creatorcontrib><creatorcontrib>Ohodnicki, Jr, Paul R</creatorcontrib><creatorcontrib>Andio, Mark</creatorcontrib><creatorcontrib>Lewis, James P</creatorcontrib><creatorcontrib>Matranga, Christopher</creatorcontrib><creatorcontrib>National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). In-house Research</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Congjun</au><au>Ranasingha, Oshadha</au><au>Natesakhawat, Sittichai</au><au>Ohodnicki, Jr, Paul R</au><au>Andio, Mark</au><au>Lewis, James P</au><au>Matranga, Christopher</au><aucorp>National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). In-house Research</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>5</volume><issue>15</issue><spage>6968</spage><epage>6974</epage><pages>6968-6974</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Plasmonic excitation of Au nanoparticles attached to the surface of ZnO catalysts using low power 532 nm laser illumination leads to significant heating of the catalyst and the conversion of CO2 and H2 reactants to CH4 and CO products. Temperature-calibrated Raman spectra of ZnO phonons show that intensity-dependent plasmonic excitation can controllably heat Au-ZnO from 30 to ~600 °C and simultaneously tune the CH4 : CO product ratio. The laser induced heating and resulting CH4 : CO product distribution agrees well with predictions from thermodynamic models and temperature-programmed reaction experiments indicating that the reaction is a thermally driven process resulting from the plasmonic heating of the Au-ZnO. The apparent quantum yield for CO2 conversion under continuous wave (cw) 532 nm laser illumination is 0.030%. The Au-ZnO catalysts are robust and remain active after repeated laser exposure and cycling. The light intensity required to initiate CO2 reduction is low (~2.5 × 10(5) W m(-2)) and achievable with solar concentrators. Our results illustrate the viability of plasmonic heating approaches for CO2 utilization and other practical thermal catalytic applications.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>23794025</pmid><doi>10.1039/c3nr02001k</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2013-01, Vol.5 (15), p.6968-6974
issn 2040-3364
2040-3372
language eng
recordid cdi_osti_scitechconnect_1129493
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects NANOSCIENCE AND NANOTECHNOLOGY
plasmonic catalysts, photocatalysis, CO2 reduction, Au nanocrystals
title Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T12%3A28%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visible%20light%20plasmonic%20heating%20of%20Au-ZnO%20for%20the%20catalytic%20reduction%20of%20CO2&rft.jtitle=Nanoscale&rft.au=Wang,%20Congjun&rft.aucorp=National%20Energy%20Technology%20Lab.%20(NETL),%20Pittsburgh,%20PA,%20and%20Morgantown,%20WV%20(United%20States).%20In-house%20Research&rft.date=2013-01-01&rft.volume=5&rft.issue=15&rft.spage=6968&rft.epage=6974&rft.pages=6968-6974&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c3nr02001k&rft_dat=%3Cproquest_osti_%3E1399933564%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1399933564&rft_id=info:pmid/23794025&rfr_iscdi=true