Duality of the interfacial thermal conductance in graphene-based nanocomposites

The thermal conductance of graphene–matrix interfaces plays a key role in controlling the thermal properties of graphene-based nanocomposites. Using atomistic simulations, we found that the interfacial thermal conductance depends strongly on the mode of heat transfer at graphene–matrix interfaces: i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2014-08, Vol.75, p.169-177
Hauptverfasser: Liu, Ying, Huang, Jingsong, Yang, Bao, Sumpter, Bobby G., Qiao, Rui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 177
container_issue
container_start_page 169
container_title Carbon (New York)
container_volume 75
creator Liu, Ying
Huang, Jingsong
Yang, Bao
Sumpter, Bobby G.
Qiao, Rui
description The thermal conductance of graphene–matrix interfaces plays a key role in controlling the thermal properties of graphene-based nanocomposites. Using atomistic simulations, we found that the interfacial thermal conductance depends strongly on the mode of heat transfer at graphene–matrix interfaces: if heat enters graphene from one side of its basal plane and immediately leaves it through the other side, the corresponding interfacial thermal conductance, Gacross, is large; if heat enters graphene from both sides of its basal plane and leaves it at a position far away on its basal plane, the corresponding interfacial thermal conductance, Gnon-across, is small. For a single-layer graphene immersed in liquid octane, Gacross is ∼150MW/m2K while Gnon-across is ∼5MW/m2K. Gacross decreases with increasing multi-layer graphene thickness (i.e., number of layers in graphene) and approaches an asymptotic value of 100MW/m2K for 7-layer graphenes. Gnon-across increases only marginally as the graphene sheet thickness increases. Such a duality of the interface thermal conductance for different probing methods and its dependence on graphene sheet thickness can be traced ultimately to the unique physical and chemical structure of graphene materials. The ramifications of these results in areas such as the optimal design of graphene-based thermal nanocomposites are discussed.
doi_str_mv 10.1016/j.carbon.2014.03.050
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1128978</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622314003078</els_id><sourcerecordid>1567117405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-af2b2c10cc884cc2c9214de3e7c70e488fd5d5bde5667e9660986f99915b34023</originalsourceid><addsrcrecordid>eNp9kE2LFDEQhoMoOK7-Aw-NIHjpNt-dXARZP2FhL3oO6epqJ0NPMiYZYf-9aXrx6Kko8lTel4eQ14wOjDL9_jSAz1OKA6dMDlQMVNEn5MDMKHphLHtKDpRS02vOxXPyopRTW6Vh8kDuP139GupDl5auHrELsWJePAS_bns-twkpzleoPsL23v3K_nLEiP3kC85d9DFBOl9SCRXLS_Js8WvBV4_zhvz88vnH7bf-7v7r99uPdz0Iq2vvFz5xYBTAGAnAwXImZxQ4wkhRGrPMalbTjErrEa3W1Bq9WGuZmoSkXNyQN_u_qdTgCrRsOLaiEaE6xrixo2nQux265PT7iqW6cyiA6-ojpmtxTOmRsVFS1VC5o5BTKRkXd8nh7PODY9Rtkt3J7ZLdJtlR4Zrkdvb2McEX8OuSm6RQ_t1yI7VScmzch53D5uRPwLxVxiZ0DnlrPKfw_6C_aVeUCQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567117405</pqid></control><display><type>article</type><title>Duality of the interfacial thermal conductance in graphene-based nanocomposites</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Liu, Ying ; Huang, Jingsong ; Yang, Bao ; Sumpter, Bobby G. ; Qiao, Rui</creator><creatorcontrib>Liu, Ying ; Huang, Jingsong ; Yang, Bao ; Sumpter, Bobby G. ; Qiao, Rui ; Center for Nanophase Materials Sciences (CNMS) ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><description>The thermal conductance of graphene–matrix interfaces plays a key role in controlling the thermal properties of graphene-based nanocomposites. Using atomistic simulations, we found that the interfacial thermal conductance depends strongly on the mode of heat transfer at graphene–matrix interfaces: if heat enters graphene from one side of its basal plane and immediately leaves it through the other side, the corresponding interfacial thermal conductance, Gacross, is large; if heat enters graphene from both sides of its basal plane and leaves it at a position far away on its basal plane, the corresponding interfacial thermal conductance, Gnon-across, is small. For a single-layer graphene immersed in liquid octane, Gacross is ∼150MW/m2K while Gnon-across is ∼5MW/m2K. Gacross decreases with increasing multi-layer graphene thickness (i.e., number of layers in graphene) and approaches an asymptotic value of 100MW/m2K for 7-layer graphenes. Gnon-across increases only marginally as the graphene sheet thickness increases. Such a duality of the interface thermal conductance for different probing methods and its dependence on graphene sheet thickness can be traced ultimately to the unique physical and chemical structure of graphene materials. The ramifications of these results in areas such as the optimal design of graphene-based thermal nanocomposites are discussed.</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2014.03.050</identifier><identifier>CODEN: CRBNAH</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Asymptotic properties ; Basal plane ; Chemistry ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; General and physical chemistry ; Graphene ; Graphical user interface ; Heat transfer ; Liquids ; Materials science ; Nanocomposites ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Physics ; Specific materials ; Surface physical chemistry ; Thermal conductivity ; Thermal properties of condensed matter ; Thermal properties of small particles, nanocrystals, nanotubes</subject><ispartof>Carbon (New York), 2014-08, Vol.75, p.169-177</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-af2b2c10cc884cc2c9214de3e7c70e488fd5d5bde5667e9660986f99915b34023</citedby><cites>FETCH-LOGICAL-c396t-af2b2c10cc884cc2c9214de3e7c70e488fd5d5bde5667e9660986f99915b34023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2014.03.050$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28465547$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1128978$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Huang, Jingsong</creatorcontrib><creatorcontrib>Yang, Bao</creatorcontrib><creatorcontrib>Sumpter, Bobby G.</creatorcontrib><creatorcontrib>Qiao, Rui</creatorcontrib><creatorcontrib>Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><title>Duality of the interfacial thermal conductance in graphene-based nanocomposites</title><title>Carbon (New York)</title><description>The thermal conductance of graphene–matrix interfaces plays a key role in controlling the thermal properties of graphene-based nanocomposites. Using atomistic simulations, we found that the interfacial thermal conductance depends strongly on the mode of heat transfer at graphene–matrix interfaces: if heat enters graphene from one side of its basal plane and immediately leaves it through the other side, the corresponding interfacial thermal conductance, Gacross, is large; if heat enters graphene from both sides of its basal plane and leaves it at a position far away on its basal plane, the corresponding interfacial thermal conductance, Gnon-across, is small. For a single-layer graphene immersed in liquid octane, Gacross is ∼150MW/m2K while Gnon-across is ∼5MW/m2K. Gacross decreases with increasing multi-layer graphene thickness (i.e., number of layers in graphene) and approaches an asymptotic value of 100MW/m2K for 7-layer graphenes. Gnon-across increases only marginally as the graphene sheet thickness increases. Such a duality of the interface thermal conductance for different probing methods and its dependence on graphene sheet thickness can be traced ultimately to the unique physical and chemical structure of graphene materials. The ramifications of these results in areas such as the optimal design of graphene-based thermal nanocomposites are discussed.</description><subject>Asymptotic properties</subject><subject>Basal plane</subject><subject>Chemistry</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>General and physical chemistry</subject><subject>Graphene</subject><subject>Graphical user interface</subject><subject>Heat transfer</subject><subject>Liquids</subject><subject>Materials science</subject><subject>Nanocomposites</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Physics</subject><subject>Specific materials</subject><subject>Surface physical chemistry</subject><subject>Thermal conductivity</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of small particles, nanocrystals, nanotubes</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE2LFDEQhoMoOK7-Aw-NIHjpNt-dXARZP2FhL3oO6epqJ0NPMiYZYf-9aXrx6Kko8lTel4eQ14wOjDL9_jSAz1OKA6dMDlQMVNEn5MDMKHphLHtKDpRS02vOxXPyopRTW6Vh8kDuP139GupDl5auHrELsWJePAS_bns-twkpzleoPsL23v3K_nLEiP3kC85d9DFBOl9SCRXLS_Js8WvBV4_zhvz88vnH7bf-7v7r99uPdz0Iq2vvFz5xYBTAGAnAwXImZxQ4wkhRGrPMalbTjErrEa3W1Bq9WGuZmoSkXNyQN_u_qdTgCrRsOLaiEaE6xrixo2nQux265PT7iqW6cyiA6-ojpmtxTOmRsVFS1VC5o5BTKRkXd8nh7PODY9Rtkt3J7ZLdJtlR4Zrkdvb2McEX8OuSm6RQ_t1yI7VScmzch53D5uRPwLxVxiZ0DnlrPKfw_6C_aVeUCQ</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Liu, Ying</creator><creator>Huang, Jingsong</creator><creator>Yang, Bao</creator><creator>Sumpter, Bobby G.</creator><creator>Qiao, Rui</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140801</creationdate><title>Duality of the interfacial thermal conductance in graphene-based nanocomposites</title><author>Liu, Ying ; Huang, Jingsong ; Yang, Bao ; Sumpter, Bobby G. ; Qiao, Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-af2b2c10cc884cc2c9214de3e7c70e488fd5d5bde5667e9660986f99915b34023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Asymptotic properties</topic><topic>Basal plane</topic><topic>Chemistry</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>General and physical chemistry</topic><topic>Graphene</topic><topic>Graphical user interface</topic><topic>Heat transfer</topic><topic>Liquids</topic><topic>Materials science</topic><topic>Nanocomposites</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Physics</topic><topic>Specific materials</topic><topic>Surface physical chemistry</topic><topic>Thermal conductivity</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of small particles, nanocrystals, nanotubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Huang, Jingsong</creatorcontrib><creatorcontrib>Yang, Bao</creatorcontrib><creatorcontrib>Sumpter, Bobby G.</creatorcontrib><creatorcontrib>Qiao, Rui</creatorcontrib><creatorcontrib>Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ying</au><au>Huang, Jingsong</au><au>Yang, Bao</au><au>Sumpter, Bobby G.</au><au>Qiao, Rui</au><aucorp>Center for Nanophase Materials Sciences (CNMS)</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Duality of the interfacial thermal conductance in graphene-based nanocomposites</atitle><jtitle>Carbon (New York)</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>75</volume><spage>169</spage><epage>177</epage><pages>169-177</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><coden>CRBNAH</coden><abstract>The thermal conductance of graphene–matrix interfaces plays a key role in controlling the thermal properties of graphene-based nanocomposites. Using atomistic simulations, we found that the interfacial thermal conductance depends strongly on the mode of heat transfer at graphene–matrix interfaces: if heat enters graphene from one side of its basal plane and immediately leaves it through the other side, the corresponding interfacial thermal conductance, Gacross, is large; if heat enters graphene from both sides of its basal plane and leaves it at a position far away on its basal plane, the corresponding interfacial thermal conductance, Gnon-across, is small. For a single-layer graphene immersed in liquid octane, Gacross is ∼150MW/m2K while Gnon-across is ∼5MW/m2K. Gacross decreases with increasing multi-layer graphene thickness (i.e., number of layers in graphene) and approaches an asymptotic value of 100MW/m2K for 7-layer graphenes. Gnon-across increases only marginally as the graphene sheet thickness increases. Such a duality of the interface thermal conductance for different probing methods and its dependence on graphene sheet thickness can be traced ultimately to the unique physical and chemical structure of graphene materials. The ramifications of these results in areas such as the optimal design of graphene-based thermal nanocomposites are discussed.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2014.03.050</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2014-08, Vol.75, p.169-177
issn 0008-6223
1873-3891
language eng
recordid cdi_osti_scitechconnect_1128978
source ScienceDirect Journals (5 years ago - present)
subjects Asymptotic properties
Basal plane
Chemistry
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Fullerenes and related materials
diamonds, graphite
General and physical chemistry
Graphene
Graphical user interface
Heat transfer
Liquids
Materials science
Nanocomposites
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Physics
Specific materials
Surface physical chemistry
Thermal conductivity
Thermal properties of condensed matter
Thermal properties of small particles, nanocrystals, nanotubes
title Duality of the interfacial thermal conductance in graphene-based nanocomposites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A19%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Duality%20of%20the%20interfacial%20thermal%20conductance%20in%20graphene-based%20nanocomposites&rft.jtitle=Carbon%20(New%20York)&rft.au=Liu,%20Ying&rft.aucorp=Center%20for%20Nanophase%20Materials%20Sciences%20(CNMS)&rft.date=2014-08-01&rft.volume=75&rft.spage=169&rft.epage=177&rft.pages=169-177&rft.issn=0008-6223&rft.eissn=1873-3891&rft.coden=CRBNAH&rft_id=info:doi/10.1016/j.carbon.2014.03.050&rft_dat=%3Cproquest_osti_%3E1567117405%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567117405&rft_id=info:pmid/&rft_els_id=S0008622314003078&rfr_iscdi=true