Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing
The research presented in this article focuses on a 9-m CX-100 wind turbine blade, designed by a team led by Sandia National Laboratories and manufactured by TPI Composites Inc. The key difference between the 9-m blade and baseline CX-100 blades is that this blade contains fabric wave defects of con...
Gespeichert in:
Veröffentlicht in: | Structural health monitoring 2014-11, Vol.13 (6), p.629-643 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 643 |
---|---|
container_issue | 6 |
container_start_page | 629 |
container_title | Structural health monitoring |
container_volume | 13 |
creator | Niezrecki, Christopher Avitabile, Peter Chen, Julie Sherwood, James Lundstrom, Troy LeBlanc, Bruce Hughes, Scott Desmond, Michael Beattie, Alan Rumsey, Mark Klute, Sandra M Pedrazzani, Renee Werlink, Rudy Newman, John |
description | The research presented in this article focuses on a 9-m CX-100 wind turbine blade, designed by a team led by Sandia National Laboratories and manufactured by TPI Composites Inc. The key difference between the 9-m blade and baseline CX-100 blades is that this blade contains fabric wave defects of controlled geometry inserted at specified locations along the blade length. The defect blade was tested at the National Wind Technology Center at the National Renewable Energy Laboratory using a schedule of cycles at increasing load level until failure was detected. Researchers used digital image correlation, shearography, acoustic emission, fiber-optic strain sensing, thermal imaging, and piezoelectric sensing as structural health monitoring techniques. This article provides a comparison of the sensing results of these different structural health monitoring approaches to detect the defects and track the resultant damage from the initial fatigue cycle to final failure. |
doi_str_mv | 10.1177/1475921714532995 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1122363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1475921714532995</sage_id><sourcerecordid>1686443317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-a63c595708275e6b9096904f46bfe61e25092c60b39b2734dbccfd7a67f26ac23</originalsourceid><addsrcrecordid>eNp1kM1PAyEQxTdGE2v17pF48rLK10I5msaPJk286M2EsDBUmi3UZdfG_15qPZl4Ypj3ezDzquqS4BtCpLwlXDaKEkl4w6hSzVE1IZKTmhExOy51keu9flqd5bzGuJRSTKq3RcxbsENIEZno0CbFMKQ-xBVKHu1CaQ1j34YIqO2Mgxo2LTgHDu3MJyAHvpgzcuOPxZshrEZAA-Sh3M-rE2-6DBe_57R6fbh_mT_Vy-fHxfxuWVtO-VAbwWyjGolnVDYgWoWVUJh7LloPggBtsKJW4JaplkrGXWutd9II6akwlrJpdXV4N5VvdbZhAPtuU4xlNk0IpUywAl0foG2fPsYyoN6EbKHrTIQ0Zl1yEpwzRmRB8QG1fcq5B6-3fdiY_ksTrPdp679pF0t9sGSzAr1OYx_Lxv_z34zWfr4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1686443317</pqid></control><display><type>article</type><title>Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing</title><source>SAGE Complete</source><creator>Niezrecki, Christopher ; Avitabile, Peter ; Chen, Julie ; Sherwood, James ; Lundstrom, Troy ; LeBlanc, Bruce ; Hughes, Scott ; Desmond, Michael ; Beattie, Alan ; Rumsey, Mark ; Klute, Sandra M ; Pedrazzani, Renee ; Werlink, Rudy ; Newman, John</creator><creatorcontrib>Niezrecki, Christopher ; Avitabile, Peter ; Chen, Julie ; Sherwood, James ; Lundstrom, Troy ; LeBlanc, Bruce ; Hughes, Scott ; Desmond, Michael ; Beattie, Alan ; Rumsey, Mark ; Klute, Sandra M ; Pedrazzani, Renee ; Werlink, Rudy ; Newman, John ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>The research presented in this article focuses on a 9-m CX-100 wind turbine blade, designed by a team led by Sandia National Laboratories and manufactured by TPI Composites Inc. The key difference between the 9-m blade and baseline CX-100 blades is that this blade contains fabric wave defects of controlled geometry inserted at specified locations along the blade length. The defect blade was tested at the National Wind Technology Center at the National Renewable Energy Laboratory using a schedule of cycles at increasing load level until failure was detected. Researchers used digital image correlation, shearography, acoustic emission, fiber-optic strain sensing, thermal imaging, and piezoelectric sensing as structural health monitoring techniques. This article provides a comparison of the sensing results of these different structural health monitoring approaches to detect the defects and track the resultant damage from the initial fatigue cycle to final failure.</description><identifier>ISSN: 1475-9217</identifier><identifier>EISSN: 1741-3168</identifier><identifier>DOI: 10.1177/1475921714532995</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Blades ; composites ; damage detection ; defect ; Defects ; Detection ; digital image correlation ; ENGINEERING ; Fatigue failure ; Fatigue testing ; fiber-optic sensing ; Health monitoring (engineering) ; shearography ; Structural health monitoring ; WIND ENERGY ; wind turbine blade ; Wind turbines</subject><ispartof>Structural health monitoring, 2014-11, Vol.13 (6), p.629-643</ispartof><rights>The Author(s) 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-a63c595708275e6b9096904f46bfe61e25092c60b39b2734dbccfd7a67f26ac23</citedby><cites>FETCH-LOGICAL-c424t-a63c595708275e6b9096904f46bfe61e25092c60b39b2734dbccfd7a67f26ac23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1475921714532995$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1475921714532995$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>230,314,777,781,882,21800,27905,27906,43602,43603</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1122363$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Niezrecki, Christopher</creatorcontrib><creatorcontrib>Avitabile, Peter</creatorcontrib><creatorcontrib>Chen, Julie</creatorcontrib><creatorcontrib>Sherwood, James</creatorcontrib><creatorcontrib>Lundstrom, Troy</creatorcontrib><creatorcontrib>LeBlanc, Bruce</creatorcontrib><creatorcontrib>Hughes, Scott</creatorcontrib><creatorcontrib>Desmond, Michael</creatorcontrib><creatorcontrib>Beattie, Alan</creatorcontrib><creatorcontrib>Rumsey, Mark</creatorcontrib><creatorcontrib>Klute, Sandra M</creatorcontrib><creatorcontrib>Pedrazzani, Renee</creatorcontrib><creatorcontrib>Werlink, Rudy</creatorcontrib><creatorcontrib>Newman, John</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing</title><title>Structural health monitoring</title><description>The research presented in this article focuses on a 9-m CX-100 wind turbine blade, designed by a team led by Sandia National Laboratories and manufactured by TPI Composites Inc. The key difference between the 9-m blade and baseline CX-100 blades is that this blade contains fabric wave defects of controlled geometry inserted at specified locations along the blade length. The defect blade was tested at the National Wind Technology Center at the National Renewable Energy Laboratory using a schedule of cycles at increasing load level until failure was detected. Researchers used digital image correlation, shearography, acoustic emission, fiber-optic strain sensing, thermal imaging, and piezoelectric sensing as structural health monitoring techniques. This article provides a comparison of the sensing results of these different structural health monitoring approaches to detect the defects and track the resultant damage from the initial fatigue cycle to final failure.</description><subject>Blades</subject><subject>composites</subject><subject>damage detection</subject><subject>defect</subject><subject>Defects</subject><subject>Detection</subject><subject>digital image correlation</subject><subject>ENGINEERING</subject><subject>Fatigue failure</subject><subject>Fatigue testing</subject><subject>fiber-optic sensing</subject><subject>Health monitoring (engineering)</subject><subject>shearography</subject><subject>Structural health monitoring</subject><subject>WIND ENERGY</subject><subject>wind turbine blade</subject><subject>Wind turbines</subject><issn>1475-9217</issn><issn>1741-3168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kM1PAyEQxTdGE2v17pF48rLK10I5msaPJk286M2EsDBUmi3UZdfG_15qPZl4Ypj3ezDzquqS4BtCpLwlXDaKEkl4w6hSzVE1IZKTmhExOy51keu9flqd5bzGuJRSTKq3RcxbsENIEZno0CbFMKQ-xBVKHu1CaQ1j34YIqO2Mgxo2LTgHDu3MJyAHvpgzcuOPxZshrEZAA-Sh3M-rE2-6DBe_57R6fbh_mT_Vy-fHxfxuWVtO-VAbwWyjGolnVDYgWoWVUJh7LloPggBtsKJW4JaplkrGXWutd9II6akwlrJpdXV4N5VvdbZhAPtuU4xlNk0IpUywAl0foG2fPsYyoN6EbKHrTIQ0Zl1yEpwzRmRB8QG1fcq5B6-3fdiY_ksTrPdp679pF0t9sGSzAr1OYx_Lxv_z34zWfr4</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Niezrecki, Christopher</creator><creator>Avitabile, Peter</creator><creator>Chen, Julie</creator><creator>Sherwood, James</creator><creator>Lundstrom, Troy</creator><creator>LeBlanc, Bruce</creator><creator>Hughes, Scott</creator><creator>Desmond, Michael</creator><creator>Beattie, Alan</creator><creator>Rumsey, Mark</creator><creator>Klute, Sandra M</creator><creator>Pedrazzani, Renee</creator><creator>Werlink, Rudy</creator><creator>Newman, John</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20141101</creationdate><title>Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing</title><author>Niezrecki, Christopher ; Avitabile, Peter ; Chen, Julie ; Sherwood, James ; Lundstrom, Troy ; LeBlanc, Bruce ; Hughes, Scott ; Desmond, Michael ; Beattie, Alan ; Rumsey, Mark ; Klute, Sandra M ; Pedrazzani, Renee ; Werlink, Rudy ; Newman, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-a63c595708275e6b9096904f46bfe61e25092c60b39b2734dbccfd7a67f26ac23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Blades</topic><topic>composites</topic><topic>damage detection</topic><topic>defect</topic><topic>Defects</topic><topic>Detection</topic><topic>digital image correlation</topic><topic>ENGINEERING</topic><topic>Fatigue failure</topic><topic>Fatigue testing</topic><topic>fiber-optic sensing</topic><topic>Health monitoring (engineering)</topic><topic>shearography</topic><topic>Structural health monitoring</topic><topic>WIND ENERGY</topic><topic>wind turbine blade</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niezrecki, Christopher</creatorcontrib><creatorcontrib>Avitabile, Peter</creatorcontrib><creatorcontrib>Chen, Julie</creatorcontrib><creatorcontrib>Sherwood, James</creatorcontrib><creatorcontrib>Lundstrom, Troy</creatorcontrib><creatorcontrib>LeBlanc, Bruce</creatorcontrib><creatorcontrib>Hughes, Scott</creatorcontrib><creatorcontrib>Desmond, Michael</creatorcontrib><creatorcontrib>Beattie, Alan</creatorcontrib><creatorcontrib>Rumsey, Mark</creatorcontrib><creatorcontrib>Klute, Sandra M</creatorcontrib><creatorcontrib>Pedrazzani, Renee</creatorcontrib><creatorcontrib>Werlink, Rudy</creatorcontrib><creatorcontrib>Newman, John</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Structural health monitoring</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niezrecki, Christopher</au><au>Avitabile, Peter</au><au>Chen, Julie</au><au>Sherwood, James</au><au>Lundstrom, Troy</au><au>LeBlanc, Bruce</au><au>Hughes, Scott</au><au>Desmond, Michael</au><au>Beattie, Alan</au><au>Rumsey, Mark</au><au>Klute, Sandra M</au><au>Pedrazzani, Renee</au><au>Werlink, Rudy</au><au>Newman, John</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing</atitle><jtitle>Structural health monitoring</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>13</volume><issue>6</issue><spage>629</spage><epage>643</epage><pages>629-643</pages><issn>1475-9217</issn><eissn>1741-3168</eissn><abstract>The research presented in this article focuses on a 9-m CX-100 wind turbine blade, designed by a team led by Sandia National Laboratories and manufactured by TPI Composites Inc. The key difference between the 9-m blade and baseline CX-100 blades is that this blade contains fabric wave defects of controlled geometry inserted at specified locations along the blade length. The defect blade was tested at the National Wind Technology Center at the National Renewable Energy Laboratory using a schedule of cycles at increasing load level until failure was detected. Researchers used digital image correlation, shearography, acoustic emission, fiber-optic strain sensing, thermal imaging, and piezoelectric sensing as structural health monitoring techniques. This article provides a comparison of the sensing results of these different structural health monitoring approaches to detect the defects and track the resultant damage from the initial fatigue cycle to final failure.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1475921714532995</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1475-9217 |
ispartof | Structural health monitoring, 2014-11, Vol.13 (6), p.629-643 |
issn | 1475-9217 1741-3168 |
language | eng |
recordid | cdi_osti_scitechconnect_1122363 |
source | SAGE Complete |
subjects | Blades composites damage detection defect Defects Detection digital image correlation ENGINEERING Fatigue failure Fatigue testing fiber-optic sensing Health monitoring (engineering) shearography Structural health monitoring WIND ENERGY wind turbine blade Wind turbines |
title | Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A00%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inspection%20and%20monitoring%20of%20wind%20turbine%20blade-embedded%20wave%20defects%20during%20fatigue%20testing&rft.jtitle=Structural%20health%20monitoring&rft.au=Niezrecki,%20Christopher&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2014-11-01&rft.volume=13&rft.issue=6&rft.spage=629&rft.epage=643&rft.pages=629-643&rft.issn=1475-9217&rft.eissn=1741-3168&rft_id=info:doi/10.1177/1475921714532995&rft_dat=%3Cproquest_osti_%3E1686443317%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1686443317&rft_id=info:pmid/&rft_sage_id=10.1177_1475921714532995&rfr_iscdi=true |