Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing

The research presented in this article focuses on a 9-m CX-100 wind turbine blade, designed by a team led by Sandia National Laboratories and manufactured by TPI Composites Inc. The key difference between the 9-m blade and baseline CX-100 blades is that this blade contains fabric wave defects of con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural health monitoring 2014-11, Vol.13 (6), p.629-643
Hauptverfasser: Niezrecki, Christopher, Avitabile, Peter, Chen, Julie, Sherwood, James, Lundstrom, Troy, LeBlanc, Bruce, Hughes, Scott, Desmond, Michael, Beattie, Alan, Rumsey, Mark, Klute, Sandra M, Pedrazzani, Renee, Werlink, Rudy, Newman, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 643
container_issue 6
container_start_page 629
container_title Structural health monitoring
container_volume 13
creator Niezrecki, Christopher
Avitabile, Peter
Chen, Julie
Sherwood, James
Lundstrom, Troy
LeBlanc, Bruce
Hughes, Scott
Desmond, Michael
Beattie, Alan
Rumsey, Mark
Klute, Sandra M
Pedrazzani, Renee
Werlink, Rudy
Newman, John
description The research presented in this article focuses on a 9-m CX-100 wind turbine blade, designed by a team led by Sandia National Laboratories and manufactured by TPI Composites Inc. The key difference between the 9-m blade and baseline CX-100 blades is that this blade contains fabric wave defects of controlled geometry inserted at specified locations along the blade length. The defect blade was tested at the National Wind Technology Center at the National Renewable Energy Laboratory using a schedule of cycles at increasing load level until failure was detected. Researchers used digital image correlation, shearography, acoustic emission, fiber-optic strain sensing, thermal imaging, and piezoelectric sensing as structural health monitoring techniques. This article provides a comparison of the sensing results of these different structural health monitoring approaches to detect the defects and track the resultant damage from the initial fatigue cycle to final failure.
doi_str_mv 10.1177/1475921714532995
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1122363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1475921714532995</sage_id><sourcerecordid>1686443317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-a63c595708275e6b9096904f46bfe61e25092c60b39b2734dbccfd7a67f26ac23</originalsourceid><addsrcrecordid>eNp1kM1PAyEQxTdGE2v17pF48rLK10I5msaPJk286M2EsDBUmi3UZdfG_15qPZl4Ypj3ezDzquqS4BtCpLwlXDaKEkl4w6hSzVE1IZKTmhExOy51keu9flqd5bzGuJRSTKq3RcxbsENIEZno0CbFMKQ-xBVKHu1CaQ1j34YIqO2Mgxo2LTgHDu3MJyAHvpgzcuOPxZshrEZAA-Sh3M-rE2-6DBe_57R6fbh_mT_Vy-fHxfxuWVtO-VAbwWyjGolnVDYgWoWVUJh7LloPggBtsKJW4JaplkrGXWutd9II6akwlrJpdXV4N5VvdbZhAPtuU4xlNk0IpUywAl0foG2fPsYyoN6EbKHrTIQ0Zl1yEpwzRmRB8QG1fcq5B6-3fdiY_ksTrPdp679pF0t9sGSzAr1OYx_Lxv_z34zWfr4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1686443317</pqid></control><display><type>article</type><title>Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing</title><source>SAGE Complete</source><creator>Niezrecki, Christopher ; Avitabile, Peter ; Chen, Julie ; Sherwood, James ; Lundstrom, Troy ; LeBlanc, Bruce ; Hughes, Scott ; Desmond, Michael ; Beattie, Alan ; Rumsey, Mark ; Klute, Sandra M ; Pedrazzani, Renee ; Werlink, Rudy ; Newman, John</creator><creatorcontrib>Niezrecki, Christopher ; Avitabile, Peter ; Chen, Julie ; Sherwood, James ; Lundstrom, Troy ; LeBlanc, Bruce ; Hughes, Scott ; Desmond, Michael ; Beattie, Alan ; Rumsey, Mark ; Klute, Sandra M ; Pedrazzani, Renee ; Werlink, Rudy ; Newman, John ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>The research presented in this article focuses on a 9-m CX-100 wind turbine blade, designed by a team led by Sandia National Laboratories and manufactured by TPI Composites Inc. The key difference between the 9-m blade and baseline CX-100 blades is that this blade contains fabric wave defects of controlled geometry inserted at specified locations along the blade length. The defect blade was tested at the National Wind Technology Center at the National Renewable Energy Laboratory using a schedule of cycles at increasing load level until failure was detected. Researchers used digital image correlation, shearography, acoustic emission, fiber-optic strain sensing, thermal imaging, and piezoelectric sensing as structural health monitoring techniques. This article provides a comparison of the sensing results of these different structural health monitoring approaches to detect the defects and track the resultant damage from the initial fatigue cycle to final failure.</description><identifier>ISSN: 1475-9217</identifier><identifier>EISSN: 1741-3168</identifier><identifier>DOI: 10.1177/1475921714532995</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Blades ; composites ; damage detection ; defect ; Defects ; Detection ; digital image correlation ; ENGINEERING ; Fatigue failure ; Fatigue testing ; fiber-optic sensing ; Health monitoring (engineering) ; shearography ; Structural health monitoring ; WIND ENERGY ; wind turbine blade ; Wind turbines</subject><ispartof>Structural health monitoring, 2014-11, Vol.13 (6), p.629-643</ispartof><rights>The Author(s) 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-a63c595708275e6b9096904f46bfe61e25092c60b39b2734dbccfd7a67f26ac23</citedby><cites>FETCH-LOGICAL-c424t-a63c595708275e6b9096904f46bfe61e25092c60b39b2734dbccfd7a67f26ac23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1475921714532995$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1475921714532995$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>230,314,777,781,882,21800,27905,27906,43602,43603</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1122363$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Niezrecki, Christopher</creatorcontrib><creatorcontrib>Avitabile, Peter</creatorcontrib><creatorcontrib>Chen, Julie</creatorcontrib><creatorcontrib>Sherwood, James</creatorcontrib><creatorcontrib>Lundstrom, Troy</creatorcontrib><creatorcontrib>LeBlanc, Bruce</creatorcontrib><creatorcontrib>Hughes, Scott</creatorcontrib><creatorcontrib>Desmond, Michael</creatorcontrib><creatorcontrib>Beattie, Alan</creatorcontrib><creatorcontrib>Rumsey, Mark</creatorcontrib><creatorcontrib>Klute, Sandra M</creatorcontrib><creatorcontrib>Pedrazzani, Renee</creatorcontrib><creatorcontrib>Werlink, Rudy</creatorcontrib><creatorcontrib>Newman, John</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing</title><title>Structural health monitoring</title><description>The research presented in this article focuses on a 9-m CX-100 wind turbine blade, designed by a team led by Sandia National Laboratories and manufactured by TPI Composites Inc. The key difference between the 9-m blade and baseline CX-100 blades is that this blade contains fabric wave defects of controlled geometry inserted at specified locations along the blade length. The defect blade was tested at the National Wind Technology Center at the National Renewable Energy Laboratory using a schedule of cycles at increasing load level until failure was detected. Researchers used digital image correlation, shearography, acoustic emission, fiber-optic strain sensing, thermal imaging, and piezoelectric sensing as structural health monitoring techniques. This article provides a comparison of the sensing results of these different structural health monitoring approaches to detect the defects and track the resultant damage from the initial fatigue cycle to final failure.</description><subject>Blades</subject><subject>composites</subject><subject>damage detection</subject><subject>defect</subject><subject>Defects</subject><subject>Detection</subject><subject>digital image correlation</subject><subject>ENGINEERING</subject><subject>Fatigue failure</subject><subject>Fatigue testing</subject><subject>fiber-optic sensing</subject><subject>Health monitoring (engineering)</subject><subject>shearography</subject><subject>Structural health monitoring</subject><subject>WIND ENERGY</subject><subject>wind turbine blade</subject><subject>Wind turbines</subject><issn>1475-9217</issn><issn>1741-3168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kM1PAyEQxTdGE2v17pF48rLK10I5msaPJk286M2EsDBUmi3UZdfG_15qPZl4Ypj3ezDzquqS4BtCpLwlXDaKEkl4w6hSzVE1IZKTmhExOy51keu9flqd5bzGuJRSTKq3RcxbsENIEZno0CbFMKQ-xBVKHu1CaQ1j34YIqO2Mgxo2LTgHDu3MJyAHvpgzcuOPxZshrEZAA-Sh3M-rE2-6DBe_57R6fbh_mT_Vy-fHxfxuWVtO-VAbwWyjGolnVDYgWoWVUJh7LloPggBtsKJW4JaplkrGXWutd9II6akwlrJpdXV4N5VvdbZhAPtuU4xlNk0IpUywAl0foG2fPsYyoN6EbKHrTIQ0Zl1yEpwzRmRB8QG1fcq5B6-3fdiY_ksTrPdp679pF0t9sGSzAr1OYx_Lxv_z34zWfr4</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Niezrecki, Christopher</creator><creator>Avitabile, Peter</creator><creator>Chen, Julie</creator><creator>Sherwood, James</creator><creator>Lundstrom, Troy</creator><creator>LeBlanc, Bruce</creator><creator>Hughes, Scott</creator><creator>Desmond, Michael</creator><creator>Beattie, Alan</creator><creator>Rumsey, Mark</creator><creator>Klute, Sandra M</creator><creator>Pedrazzani, Renee</creator><creator>Werlink, Rudy</creator><creator>Newman, John</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20141101</creationdate><title>Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing</title><author>Niezrecki, Christopher ; Avitabile, Peter ; Chen, Julie ; Sherwood, James ; Lundstrom, Troy ; LeBlanc, Bruce ; Hughes, Scott ; Desmond, Michael ; Beattie, Alan ; Rumsey, Mark ; Klute, Sandra M ; Pedrazzani, Renee ; Werlink, Rudy ; Newman, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-a63c595708275e6b9096904f46bfe61e25092c60b39b2734dbccfd7a67f26ac23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Blades</topic><topic>composites</topic><topic>damage detection</topic><topic>defect</topic><topic>Defects</topic><topic>Detection</topic><topic>digital image correlation</topic><topic>ENGINEERING</topic><topic>Fatigue failure</topic><topic>Fatigue testing</topic><topic>fiber-optic sensing</topic><topic>Health monitoring (engineering)</topic><topic>shearography</topic><topic>Structural health monitoring</topic><topic>WIND ENERGY</topic><topic>wind turbine blade</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niezrecki, Christopher</creatorcontrib><creatorcontrib>Avitabile, Peter</creatorcontrib><creatorcontrib>Chen, Julie</creatorcontrib><creatorcontrib>Sherwood, James</creatorcontrib><creatorcontrib>Lundstrom, Troy</creatorcontrib><creatorcontrib>LeBlanc, Bruce</creatorcontrib><creatorcontrib>Hughes, Scott</creatorcontrib><creatorcontrib>Desmond, Michael</creatorcontrib><creatorcontrib>Beattie, Alan</creatorcontrib><creatorcontrib>Rumsey, Mark</creatorcontrib><creatorcontrib>Klute, Sandra M</creatorcontrib><creatorcontrib>Pedrazzani, Renee</creatorcontrib><creatorcontrib>Werlink, Rudy</creatorcontrib><creatorcontrib>Newman, John</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Structural health monitoring</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niezrecki, Christopher</au><au>Avitabile, Peter</au><au>Chen, Julie</au><au>Sherwood, James</au><au>Lundstrom, Troy</au><au>LeBlanc, Bruce</au><au>Hughes, Scott</au><au>Desmond, Michael</au><au>Beattie, Alan</au><au>Rumsey, Mark</au><au>Klute, Sandra M</au><au>Pedrazzani, Renee</au><au>Werlink, Rudy</au><au>Newman, John</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing</atitle><jtitle>Structural health monitoring</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>13</volume><issue>6</issue><spage>629</spage><epage>643</epage><pages>629-643</pages><issn>1475-9217</issn><eissn>1741-3168</eissn><abstract>The research presented in this article focuses on a 9-m CX-100 wind turbine blade, designed by a team led by Sandia National Laboratories and manufactured by TPI Composites Inc. The key difference between the 9-m blade and baseline CX-100 blades is that this blade contains fabric wave defects of controlled geometry inserted at specified locations along the blade length. The defect blade was tested at the National Wind Technology Center at the National Renewable Energy Laboratory using a schedule of cycles at increasing load level until failure was detected. Researchers used digital image correlation, shearography, acoustic emission, fiber-optic strain sensing, thermal imaging, and piezoelectric sensing as structural health monitoring techniques. This article provides a comparison of the sensing results of these different structural health monitoring approaches to detect the defects and track the resultant damage from the initial fatigue cycle to final failure.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1475921714532995</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1475-9217
ispartof Structural health monitoring, 2014-11, Vol.13 (6), p.629-643
issn 1475-9217
1741-3168
language eng
recordid cdi_osti_scitechconnect_1122363
source SAGE Complete
subjects Blades
composites
damage detection
defect
Defects
Detection
digital image correlation
ENGINEERING
Fatigue failure
Fatigue testing
fiber-optic sensing
Health monitoring (engineering)
shearography
Structural health monitoring
WIND ENERGY
wind turbine blade
Wind turbines
title Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A00%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inspection%20and%20monitoring%20of%20wind%20turbine%20blade-embedded%20wave%20defects%20during%20fatigue%20testing&rft.jtitle=Structural%20health%20monitoring&rft.au=Niezrecki,%20Christopher&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2014-11-01&rft.volume=13&rft.issue=6&rft.spage=629&rft.epage=643&rft.pages=629-643&rft.issn=1475-9217&rft.eissn=1741-3168&rft_id=info:doi/10.1177/1475921714532995&rft_dat=%3Cproquest_osti_%3E1686443317%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1686443317&rft_id=info:pmid/&rft_sage_id=10.1177_1475921714532995&rfr_iscdi=true