A multiscale mass scaling approach for explicit time integration using proper orthogonal decomposition

SUMMARY One of the main computational issues with explicit dynamics simulations is the significant reduction of the critical time step as the spatial resolution of the finite element mesh increases. In this work, a selective mass scaling approach is presented that can significantly reduce the comput...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2014-03, Vol.97 (11), p.799-818
Hauptverfasser: de Frías, G. J., Aquino, W., Pierson, K. H., Heinstein, M. W., Spencer, B. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 818
container_issue 11
container_start_page 799
container_title International journal for numerical methods in engineering
container_volume 97
creator de Frías, G. J.
Aquino, W.
Pierson, K. H.
Heinstein, M. W.
Spencer, B. W.
description SUMMARY One of the main computational issues with explicit dynamics simulations is the significant reduction of the critical time step as the spatial resolution of the finite element mesh increases. In this work, a selective mass scaling approach is presented that can significantly reduce the computational cost in explicit dynamic simulations, while maintaining accuracy. The proposed method is based on a multiscale decomposition approach that separates the dynamics of the system into low (coarse scales) and high frequencies (fine scales). Here, the critical time step is increased by selectively applying mass scaling on the fine scale component only. In problems where the response is dominated by the coarse (low frequency) scales, significant increases in the stable time step can be realized. In this work, we use the proper orthogonal decomposition (POD) method to build the coarse scale space. The main idea behind POD is to obtain an optimal low‐dimensional orthogonal basis for representing an ensemble of high‐dimensional data. In our proposed method, the POD space is generated with snapshots of the solution obtained from early times of the full‐scale simulation. The example problems addressed in this work show significant improvements in computational time, without heavily compromising the accuracy of the results. Copyright © 2013 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nme.4608
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1122106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1513476271</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3918-283e140dcdbd4e982b0ce748bfa0a0b2b5e3f38a587ed162a05b3d451c928833</originalsourceid><addsrcrecordid>eNp10VFr1TAUB_AgCl6n4EcI-uJLt5OkadPHMbc5mFPkwsSXkKan92a2TZekuH17U64oCj6dwPlxOCd_Ql4zOGYA_GQa8bisQD0hGwZNXQCH-inZ5FZTyEax5-RFjHcAjEkQG9Kf0nEZkovWDEhHEyNdn27aUTPPwRu7p70PFB_mwVmXaHIjUjcl3AWTnJ_oElec6YyB-pD2fucnM9AOrR9nH92qXpJnvRkivvpVj8j24nx79qG4_nR5dXZ6XVjRMFVwJZCV0Nmu7UpsFG_BYl2qtjdgoOWtRNELZaSqsWMVNyBb0ZWS2YYrJcQReXMY62NyOuZ90e6tnya0STPGOYMqo3cHlHe-XzAmPebzcRjMhH6JmkkmyrriNcv07T_0zi8hX5dV2VSqzD_K_wy0wccYsNdzcKMJj5qBXkPRORS9hpJpcaA_3ICP_3X65uP5397FhA-_vQnfdVWLWurbm0t9-_7Lt6_bi89aip8ENZ2V</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1496845982</pqid></control><display><type>article</type><title>A multiscale mass scaling approach for explicit time integration using proper orthogonal decomposition</title><source>Access via Wiley Online Library</source><creator>de Frías, G. J. ; Aquino, W. ; Pierson, K. H. ; Heinstein, M. W. ; Spencer, B. W.</creator><creatorcontrib>de Frías, G. J. ; Aquino, W. ; Pierson, K. H. ; Heinstein, M. W. ; Spencer, B. W. ; Idaho National Laboratory (INL)</creatorcontrib><description>SUMMARY One of the main computational issues with explicit dynamics simulations is the significant reduction of the critical time step as the spatial resolution of the finite element mesh increases. In this work, a selective mass scaling approach is presented that can significantly reduce the computational cost in explicit dynamic simulations, while maintaining accuracy. The proposed method is based on a multiscale decomposition approach that separates the dynamics of the system into low (coarse scales) and high frequencies (fine scales). Here, the critical time step is increased by selectively applying mass scaling on the fine scale component only. In problems where the response is dominated by the coarse (low frequency) scales, significant increases in the stable time step can be realized. In this work, we use the proper orthogonal decomposition (POD) method to build the coarse scale space. The main idea behind POD is to obtain an optimal low‐dimensional orthogonal basis for representing an ensemble of high‐dimensional data. In our proposed method, the POD space is generated with snapshots of the solution obtained from early times of the full‐scale simulation. The example problems addressed in this work show significant improvements in computational time, without heavily compromising the accuracy of the results. Copyright © 2013 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.4608</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>Accuracy ; Coarsening ; Computation ; Computer simulation ; Construction ; Dynamical systems ; Dynamics ; explicit dynamics ; Finite element method ; mass scaling ; MATHEMATICS AND COMPUTING ; multiscale ; POD</subject><ispartof>International journal for numerical methods in engineering, 2014-03, Vol.97 (11), p.799-818</ispartof><rights>Copyright © 2013 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2014 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3918-283e140dcdbd4e982b0ce748bfa0a0b2b5e3f38a587ed162a05b3d451c928833</citedby><cites>FETCH-LOGICAL-c3918-283e140dcdbd4e982b0ce748bfa0a0b2b5e3f38a587ed162a05b3d451c928833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.4608$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.4608$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1122106$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>de Frías, G. J.</creatorcontrib><creatorcontrib>Aquino, W.</creatorcontrib><creatorcontrib>Pierson, K. H.</creatorcontrib><creatorcontrib>Heinstein, M. W.</creatorcontrib><creatorcontrib>Spencer, B. W.</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL)</creatorcontrib><title>A multiscale mass scaling approach for explicit time integration using proper orthogonal decomposition</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>SUMMARY One of the main computational issues with explicit dynamics simulations is the significant reduction of the critical time step as the spatial resolution of the finite element mesh increases. In this work, a selective mass scaling approach is presented that can significantly reduce the computational cost in explicit dynamic simulations, while maintaining accuracy. The proposed method is based on a multiscale decomposition approach that separates the dynamics of the system into low (coarse scales) and high frequencies (fine scales). Here, the critical time step is increased by selectively applying mass scaling on the fine scale component only. In problems where the response is dominated by the coarse (low frequency) scales, significant increases in the stable time step can be realized. In this work, we use the proper orthogonal decomposition (POD) method to build the coarse scale space. The main idea behind POD is to obtain an optimal low‐dimensional orthogonal basis for representing an ensemble of high‐dimensional data. In our proposed method, the POD space is generated with snapshots of the solution obtained from early times of the full‐scale simulation. The example problems addressed in this work show significant improvements in computational time, without heavily compromising the accuracy of the results. Copyright © 2013 John Wiley &amp; Sons, Ltd.</description><subject>Accuracy</subject><subject>Coarsening</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Construction</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>explicit dynamics</subject><subject>Finite element method</subject><subject>mass scaling</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>multiscale</subject><subject>POD</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp10VFr1TAUB_AgCl6n4EcI-uJLt5OkadPHMbc5mFPkwsSXkKan92a2TZekuH17U64oCj6dwPlxOCd_Ql4zOGYA_GQa8bisQD0hGwZNXQCH-inZ5FZTyEax5-RFjHcAjEkQG9Kf0nEZkovWDEhHEyNdn27aUTPPwRu7p70PFB_mwVmXaHIjUjcl3AWTnJ_oElec6YyB-pD2fucnM9AOrR9nH92qXpJnvRkivvpVj8j24nx79qG4_nR5dXZ6XVjRMFVwJZCV0Nmu7UpsFG_BYl2qtjdgoOWtRNELZaSqsWMVNyBb0ZWS2YYrJcQReXMY62NyOuZ90e6tnya0STPGOYMqo3cHlHe-XzAmPebzcRjMhH6JmkkmyrriNcv07T_0zi8hX5dV2VSqzD_K_wy0wccYsNdzcKMJj5qBXkPRORS9hpJpcaA_3ICP_3X65uP5397FhA-_vQnfdVWLWurbm0t9-_7Lt6_bi89aip8ENZ2V</recordid><startdate>20140316</startdate><enddate>20140316</enddate><creator>de Frías, G. J.</creator><creator>Aquino, W.</creator><creator>Pierson, K. H.</creator><creator>Heinstein, M. W.</creator><creator>Spencer, B. W.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope></search><sort><creationdate>20140316</creationdate><title>A multiscale mass scaling approach for explicit time integration using proper orthogonal decomposition</title><author>de Frías, G. J. ; Aquino, W. ; Pierson, K. H. ; Heinstein, M. W. ; Spencer, B. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3918-283e140dcdbd4e982b0ce748bfa0a0b2b5e3f38a587ed162a05b3d451c928833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Coarsening</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Construction</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>explicit dynamics</topic><topic>Finite element method</topic><topic>mass scaling</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>multiscale</topic><topic>POD</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Frías, G. J.</creatorcontrib><creatorcontrib>Aquino, W.</creatorcontrib><creatorcontrib>Pierson, K. H.</creatorcontrib><creatorcontrib>Heinstein, M. W.</creatorcontrib><creatorcontrib>Spencer, B. W.</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Frías, G. J.</au><au>Aquino, W.</au><au>Pierson, K. H.</au><au>Heinstein, M. W.</au><au>Spencer, B. W.</au><aucorp>Idaho National Laboratory (INL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multiscale mass scaling approach for explicit time integration using proper orthogonal decomposition</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2014-03-16</date><risdate>2014</risdate><volume>97</volume><issue>11</issue><spage>799</spage><epage>818</epage><pages>799-818</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>SUMMARY One of the main computational issues with explicit dynamics simulations is the significant reduction of the critical time step as the spatial resolution of the finite element mesh increases. In this work, a selective mass scaling approach is presented that can significantly reduce the computational cost in explicit dynamic simulations, while maintaining accuracy. The proposed method is based on a multiscale decomposition approach that separates the dynamics of the system into low (coarse scales) and high frequencies (fine scales). Here, the critical time step is increased by selectively applying mass scaling on the fine scale component only. In problems where the response is dominated by the coarse (low frequency) scales, significant increases in the stable time step can be realized. In this work, we use the proper orthogonal decomposition (POD) method to build the coarse scale space. The main idea behind POD is to obtain an optimal low‐dimensional orthogonal basis for representing an ensemble of high‐dimensional data. In our proposed method, the POD space is generated with snapshots of the solution obtained from early times of the full‐scale simulation. The example problems addressed in this work show significant improvements in computational time, without heavily compromising the accuracy of the results. Copyright © 2013 John Wiley &amp; Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/nme.4608</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2014-03, Vol.97 (11), p.799-818
issn 0029-5981
1097-0207
language eng
recordid cdi_osti_scitechconnect_1122106
source Access via Wiley Online Library
subjects Accuracy
Coarsening
Computation
Computer simulation
Construction
Dynamical systems
Dynamics
explicit dynamics
Finite element method
mass scaling
MATHEMATICS AND COMPUTING
multiscale
POD
title A multiscale mass scaling approach for explicit time integration using proper orthogonal decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T14%3A43%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multiscale%20mass%20scaling%20approach%20for%20explicit%20time%20integration%20using%20proper%20orthogonal%20decomposition&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=de%20Fr%C3%ADas,%20G.%20J.&rft.aucorp=Idaho%20National%20Laboratory%20(INL)&rft.date=2014-03-16&rft.volume=97&rft.issue=11&rft.spage=799&rft.epage=818&rft.pages=799-818&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.4608&rft_dat=%3Cproquest_osti_%3E1513476271%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1496845982&rft_id=info:pmid/&rfr_iscdi=true