Phase stability and property evolution of biphasic Ti–Ni–Sn alloys for use in thermoelectric applications

Thermoelectric properties and phase evolution have been studied in biphasic Ti–Ni–Sn materials containing full-Heusler TiNi2Sn embedded within half-Heusler thermoelectric TiNiSn. Materials, prepared by levitation induction melting followed by annealing, were of the nominal starting composition of Ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2014-01, Vol.115 (4)
Hauptverfasser: Douglas, Jason E., Birkel, Christina S., Verma, Nisha, Miller, Victoria M., Miao, Mao-Sheng, Stucky, Galen D., Pollock, Tresa M., Seshadri, Ram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Journal of applied physics
container_volume 115
creator Douglas, Jason E.
Birkel, Christina S.
Verma, Nisha
Miller, Victoria M.
Miao, Mao-Sheng
Stucky, Galen D.
Pollock, Tresa M.
Seshadri, Ram
description Thermoelectric properties and phase evolution have been studied in biphasic Ti–Ni–Sn materials containing full-Heusler TiNi2Sn embedded within half-Heusler thermoelectric TiNiSn. Materials, prepared by levitation induction melting followed by annealing, were of the nominal starting composition of TiNi1+xSn, with x between 0.00 and 0.25. Phases and microstructure were determined using synchrotron X-ray diffraction and optical and electron microscopy. The full-Heusler phase is observed to be semi-coherent with the half-Heusler majority phase. Differential thermal analysis was performed to determine melting temperatures of the end-member compounds. The thermal conductivity is reduced with the introduction of a dispersed, full-Heusler phase within the half-Heusler material. This leads to an increased thermoelectric figure of merit, ZT, from 0.35 for the stoichiometric compound to 0.44 for TiNi1.15Sn. Beyond x = 0.15 ZT decreases due to a rise in thermal conductivity. Density functional theory calculations using hybrid functionals were performed to determine band alignments between the half- and full-Heusler compounds, as well as comparative energies of formation. The hybrid functional band structure of TiNiSn is presented as well.
doi_str_mv 10.1063/1.4862955
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1121456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127755339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-4a0c30da3e1bf8896a26a4a27aca8f190c1850866bd3a92a0776f8b58eb067663</originalsourceid><addsrcrecordid>eNotkM1KAzEURoMoWKsL3yDoysXUZDLJJEsp_kFRwboOd9IMTZlOxiQjdOc7-IY-iSl1cy8XDh_fPQhdUjKjRLBbOqukKBXnR2hCiVRFzTk5RhNCSlpIVatTdBbjhhBKJVMTtH1bQ7Q4Jmhc59IOQ7_CQ_CDDfmwX74bk_M99i1u3JBZZ_DS_X7_vOzHe4-h6_wu4tYHPOYg1-O0tmHrbWdNCpmGYeicgX1KPEcnLXTRXvzvKfp4uF_On4rF6-Pz_G5RGCZ5KioghpEVMEubVkoloBRQQVmDAdlSRQyVnEghmhUDVQKpa9HKhkvbEFELwabo6pDrY3I6GpesWRvf97mTprSkFd9D1wcov_s52pj0xo-hz710Scs6i2NMZermQJngYwy21UNwWwg7TYneK9dU_ytnf3ZgdXA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127755339</pqid></control><display><type>article</type><title>Phase stability and property evolution of biphasic Ti–Ni–Sn alloys for use in thermoelectric applications</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Douglas, Jason E. ; Birkel, Christina S. ; Verma, Nisha ; Miller, Victoria M. ; Miao, Mao-Sheng ; Stucky, Galen D. ; Pollock, Tresa M. ; Seshadri, Ram</creator><creatorcontrib>Douglas, Jason E. ; Birkel, Christina S. ; Verma, Nisha ; Miller, Victoria M. ; Miao, Mao-Sheng ; Stucky, Galen D. ; Pollock, Tresa M. ; Seshadri, Ram ; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Thermoelectric properties and phase evolution have been studied in biphasic Ti–Ni–Sn materials containing full-Heusler TiNi2Sn embedded within half-Heusler thermoelectric TiNiSn. Materials, prepared by levitation induction melting followed by annealing, were of the nominal starting composition of TiNi1+xSn, with x between 0.00 and 0.25. Phases and microstructure were determined using synchrotron X-ray diffraction and optical and electron microscopy. The full-Heusler phase is observed to be semi-coherent with the half-Heusler majority phase. Differential thermal analysis was performed to determine melting temperatures of the end-member compounds. The thermal conductivity is reduced with the introduction of a dispersed, full-Heusler phase within the half-Heusler material. This leads to an increased thermoelectric figure of merit, ZT, from 0.35 for the stoichiometric compound to 0.44 for TiNi1.15Sn. Beyond x = 0.15 ZT decreases due to a rise in thermal conductivity. Density functional theory calculations using hybrid functionals were performed to determine band alignments between the half- and full-Heusler compounds, as well as comparative energies of formation. The hybrid functional band structure of TiNiSn is presented as well.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4862955</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Density functional theory ; Differential thermal analysis ; Evolution ; Figure of merit ; Heat conductivity ; Heat transfer ; Induction melting ; Levitation ; Phase stability ; Synchrotron radiation ; Thermal conductivity ; Thermoelectric materials ; Tin base alloys ; X-ray diffraction</subject><ispartof>Journal of applied physics, 2014-01, Vol.115 (4)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-4a0c30da3e1bf8896a26a4a27aca8f190c1850866bd3a92a0776f8b58eb067663</citedby><cites>FETCH-LOGICAL-c385t-4a0c30da3e1bf8896a26a4a27aca8f190c1850866bd3a92a0776f8b58eb067663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1121456$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Douglas, Jason E.</creatorcontrib><creatorcontrib>Birkel, Christina S.</creatorcontrib><creatorcontrib>Verma, Nisha</creatorcontrib><creatorcontrib>Miller, Victoria M.</creatorcontrib><creatorcontrib>Miao, Mao-Sheng</creatorcontrib><creatorcontrib>Stucky, Galen D.</creatorcontrib><creatorcontrib>Pollock, Tresa M.</creatorcontrib><creatorcontrib>Seshadri, Ram</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Phase stability and property evolution of biphasic Ti–Ni–Sn alloys for use in thermoelectric applications</title><title>Journal of applied physics</title><description>Thermoelectric properties and phase evolution have been studied in biphasic Ti–Ni–Sn materials containing full-Heusler TiNi2Sn embedded within half-Heusler thermoelectric TiNiSn. Materials, prepared by levitation induction melting followed by annealing, were of the nominal starting composition of TiNi1+xSn, with x between 0.00 and 0.25. Phases and microstructure were determined using synchrotron X-ray diffraction and optical and electron microscopy. The full-Heusler phase is observed to be semi-coherent with the half-Heusler majority phase. Differential thermal analysis was performed to determine melting temperatures of the end-member compounds. The thermal conductivity is reduced with the introduction of a dispersed, full-Heusler phase within the half-Heusler material. This leads to an increased thermoelectric figure of merit, ZT, from 0.35 for the stoichiometric compound to 0.44 for TiNi1.15Sn. Beyond x = 0.15 ZT decreases due to a rise in thermal conductivity. Density functional theory calculations using hybrid functionals were performed to determine band alignments between the half- and full-Heusler compounds, as well as comparative energies of formation. The hybrid functional band structure of TiNiSn is presented as well.</description><subject>Applied physics</subject><subject>Density functional theory</subject><subject>Differential thermal analysis</subject><subject>Evolution</subject><subject>Figure of merit</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Induction melting</subject><subject>Levitation</subject><subject>Phase stability</subject><subject>Synchrotron radiation</subject><subject>Thermal conductivity</subject><subject>Thermoelectric materials</subject><subject>Tin base alloys</subject><subject>X-ray diffraction</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEURoMoWKsL3yDoysXUZDLJJEsp_kFRwboOd9IMTZlOxiQjdOc7-IY-iSl1cy8XDh_fPQhdUjKjRLBbOqukKBXnR2hCiVRFzTk5RhNCSlpIVatTdBbjhhBKJVMTtH1bQ7Q4Jmhc59IOQ7_CQ_CDDfmwX74bk_M99i1u3JBZZ_DS_X7_vOzHe4-h6_wu4tYHPOYg1-O0tmHrbWdNCpmGYeicgX1KPEcnLXTRXvzvKfp4uF_On4rF6-Pz_G5RGCZ5KioghpEVMEubVkoloBRQQVmDAdlSRQyVnEghmhUDVQKpa9HKhkvbEFELwabo6pDrY3I6GpesWRvf97mTprSkFd9D1wcov_s52pj0xo-hz710Scs6i2NMZermQJngYwy21UNwWwg7TYneK9dU_ytnf3ZgdXA</recordid><startdate>20140128</startdate><enddate>20140128</enddate><creator>Douglas, Jason E.</creator><creator>Birkel, Christina S.</creator><creator>Verma, Nisha</creator><creator>Miller, Victoria M.</creator><creator>Miao, Mao-Sheng</creator><creator>Stucky, Galen D.</creator><creator>Pollock, Tresa M.</creator><creator>Seshadri, Ram</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140128</creationdate><title>Phase stability and property evolution of biphasic Ti–Ni–Sn alloys for use in thermoelectric applications</title><author>Douglas, Jason E. ; Birkel, Christina S. ; Verma, Nisha ; Miller, Victoria M. ; Miao, Mao-Sheng ; Stucky, Galen D. ; Pollock, Tresa M. ; Seshadri, Ram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-4a0c30da3e1bf8896a26a4a27aca8f190c1850866bd3a92a0776f8b58eb067663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied physics</topic><topic>Density functional theory</topic><topic>Differential thermal analysis</topic><topic>Evolution</topic><topic>Figure of merit</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Induction melting</topic><topic>Levitation</topic><topic>Phase stability</topic><topic>Synchrotron radiation</topic><topic>Thermal conductivity</topic><topic>Thermoelectric materials</topic><topic>Tin base alloys</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Douglas, Jason E.</creatorcontrib><creatorcontrib>Birkel, Christina S.</creatorcontrib><creatorcontrib>Verma, Nisha</creatorcontrib><creatorcontrib>Miller, Victoria M.</creatorcontrib><creatorcontrib>Miao, Mao-Sheng</creatorcontrib><creatorcontrib>Stucky, Galen D.</creatorcontrib><creatorcontrib>Pollock, Tresa M.</creatorcontrib><creatorcontrib>Seshadri, Ram</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Douglas, Jason E.</au><au>Birkel, Christina S.</au><au>Verma, Nisha</au><au>Miller, Victoria M.</au><au>Miao, Mao-Sheng</au><au>Stucky, Galen D.</au><au>Pollock, Tresa M.</au><au>Seshadri, Ram</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase stability and property evolution of biphasic Ti–Ni–Sn alloys for use in thermoelectric applications</atitle><jtitle>Journal of applied physics</jtitle><date>2014-01-28</date><risdate>2014</risdate><volume>115</volume><issue>4</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Thermoelectric properties and phase evolution have been studied in biphasic Ti–Ni–Sn materials containing full-Heusler TiNi2Sn embedded within half-Heusler thermoelectric TiNiSn. Materials, prepared by levitation induction melting followed by annealing, were of the nominal starting composition of TiNi1+xSn, with x between 0.00 and 0.25. Phases and microstructure were determined using synchrotron X-ray diffraction and optical and electron microscopy. The full-Heusler phase is observed to be semi-coherent with the half-Heusler majority phase. Differential thermal analysis was performed to determine melting temperatures of the end-member compounds. The thermal conductivity is reduced with the introduction of a dispersed, full-Heusler phase within the half-Heusler material. This leads to an increased thermoelectric figure of merit, ZT, from 0.35 for the stoichiometric compound to 0.44 for TiNi1.15Sn. Beyond x = 0.15 ZT decreases due to a rise in thermal conductivity. Density functional theory calculations using hybrid functionals were performed to determine band alignments between the half- and full-Heusler compounds, as well as comparative energies of formation. The hybrid functional band structure of TiNiSn is presented as well.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4862955</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2014-01, Vol.115 (4)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_1121456
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Density functional theory
Differential thermal analysis
Evolution
Figure of merit
Heat conductivity
Heat transfer
Induction melting
Levitation
Phase stability
Synchrotron radiation
Thermal conductivity
Thermoelectric materials
Tin base alloys
X-ray diffraction
title Phase stability and property evolution of biphasic Ti–Ni–Sn alloys for use in thermoelectric applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A20%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20stability%20and%20property%20evolution%20of%20biphasic%20Ti%E2%80%93Ni%E2%80%93Sn%20alloys%20for%20use%20in%20thermoelectric%20applications&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Douglas,%20Jason%20E.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2014-01-28&rft.volume=115&rft.issue=4&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4862955&rft_dat=%3Cproquest_osti_%3E2127755339%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127755339&rft_id=info:pmid/&rfr_iscdi=true