Phase stability and property evolution of biphasic Ti–Ni–Sn alloys for use in thermoelectric applications
Thermoelectric properties and phase evolution have been studied in biphasic Ti–Ni–Sn materials containing full-Heusler TiNi2Sn embedded within half-Heusler thermoelectric TiNiSn. Materials, prepared by levitation induction melting followed by annealing, were of the nominal starting composition of Ti...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2014-01, Vol.115 (4) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 115 |
creator | Douglas, Jason E. Birkel, Christina S. Verma, Nisha Miller, Victoria M. Miao, Mao-Sheng Stucky, Galen D. Pollock, Tresa M. Seshadri, Ram |
description | Thermoelectric properties and phase evolution have been studied in biphasic Ti–Ni–Sn materials containing full-Heusler TiNi2Sn embedded within half-Heusler thermoelectric TiNiSn. Materials, prepared by levitation induction melting followed by annealing, were of the nominal starting composition of TiNi1+xSn, with x between 0.00 and 0.25. Phases and microstructure were determined using synchrotron X-ray diffraction and optical and electron microscopy. The full-Heusler phase is observed to be semi-coherent with the half-Heusler majority phase. Differential thermal analysis was performed to determine melting temperatures of the end-member compounds. The thermal conductivity is reduced with the introduction of a dispersed, full-Heusler phase within the half-Heusler material. This leads to an increased thermoelectric figure of merit, ZT, from 0.35 for the stoichiometric compound to 0.44 for TiNi1.15Sn. Beyond x = 0.15 ZT decreases due to a rise in thermal conductivity. Density functional theory calculations using hybrid functionals were performed to determine band alignments between the half- and full-Heusler compounds, as well as comparative energies of formation. The hybrid functional band structure of TiNiSn is presented as well. |
doi_str_mv | 10.1063/1.4862955 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1121456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2127755339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-4a0c30da3e1bf8896a26a4a27aca8f190c1850866bd3a92a0776f8b58eb067663</originalsourceid><addsrcrecordid>eNotkM1KAzEURoMoWKsL3yDoysXUZDLJJEsp_kFRwboOd9IMTZlOxiQjdOc7-IY-iSl1cy8XDh_fPQhdUjKjRLBbOqukKBXnR2hCiVRFzTk5RhNCSlpIVatTdBbjhhBKJVMTtH1bQ7Q4Jmhc59IOQ7_CQ_CDDfmwX74bk_M99i1u3JBZZ_DS_X7_vOzHe4-h6_wu4tYHPOYg1-O0tmHrbWdNCpmGYeicgX1KPEcnLXTRXvzvKfp4uF_On4rF6-Pz_G5RGCZ5KioghpEVMEubVkoloBRQQVmDAdlSRQyVnEghmhUDVQKpa9HKhkvbEFELwabo6pDrY3I6GpesWRvf97mTprSkFd9D1wcov_s52pj0xo-hz710Scs6i2NMZermQJngYwy21UNwWwg7TYneK9dU_ytnf3ZgdXA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127755339</pqid></control><display><type>article</type><title>Phase stability and property evolution of biphasic Ti–Ni–Sn alloys for use in thermoelectric applications</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Douglas, Jason E. ; Birkel, Christina S. ; Verma, Nisha ; Miller, Victoria M. ; Miao, Mao-Sheng ; Stucky, Galen D. ; Pollock, Tresa M. ; Seshadri, Ram</creator><creatorcontrib>Douglas, Jason E. ; Birkel, Christina S. ; Verma, Nisha ; Miller, Victoria M. ; Miao, Mao-Sheng ; Stucky, Galen D. ; Pollock, Tresa M. ; Seshadri, Ram ; Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Thermoelectric properties and phase evolution have been studied in biphasic Ti–Ni–Sn materials containing full-Heusler TiNi2Sn embedded within half-Heusler thermoelectric TiNiSn. Materials, prepared by levitation induction melting followed by annealing, were of the nominal starting composition of TiNi1+xSn, with x between 0.00 and 0.25. Phases and microstructure were determined using synchrotron X-ray diffraction and optical and electron microscopy. The full-Heusler phase is observed to be semi-coherent with the half-Heusler majority phase. Differential thermal analysis was performed to determine melting temperatures of the end-member compounds. The thermal conductivity is reduced with the introduction of a dispersed, full-Heusler phase within the half-Heusler material. This leads to an increased thermoelectric figure of merit, ZT, from 0.35 for the stoichiometric compound to 0.44 for TiNi1.15Sn. Beyond x = 0.15 ZT decreases due to a rise in thermal conductivity. Density functional theory calculations using hybrid functionals were performed to determine band alignments between the half- and full-Heusler compounds, as well as comparative energies of formation. The hybrid functional band structure of TiNiSn is presented as well.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4862955</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Density functional theory ; Differential thermal analysis ; Evolution ; Figure of merit ; Heat conductivity ; Heat transfer ; Induction melting ; Levitation ; Phase stability ; Synchrotron radiation ; Thermal conductivity ; Thermoelectric materials ; Tin base alloys ; X-ray diffraction</subject><ispartof>Journal of applied physics, 2014-01, Vol.115 (4)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-4a0c30da3e1bf8896a26a4a27aca8f190c1850866bd3a92a0776f8b58eb067663</citedby><cites>FETCH-LOGICAL-c385t-4a0c30da3e1bf8896a26a4a27aca8f190c1850866bd3a92a0776f8b58eb067663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1121456$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Douglas, Jason E.</creatorcontrib><creatorcontrib>Birkel, Christina S.</creatorcontrib><creatorcontrib>Verma, Nisha</creatorcontrib><creatorcontrib>Miller, Victoria M.</creatorcontrib><creatorcontrib>Miao, Mao-Sheng</creatorcontrib><creatorcontrib>Stucky, Galen D.</creatorcontrib><creatorcontrib>Pollock, Tresa M.</creatorcontrib><creatorcontrib>Seshadri, Ram</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Phase stability and property evolution of biphasic Ti–Ni–Sn alloys for use in thermoelectric applications</title><title>Journal of applied physics</title><description>Thermoelectric properties and phase evolution have been studied in biphasic Ti–Ni–Sn materials containing full-Heusler TiNi2Sn embedded within half-Heusler thermoelectric TiNiSn. Materials, prepared by levitation induction melting followed by annealing, were of the nominal starting composition of TiNi1+xSn, with x between 0.00 and 0.25. Phases and microstructure were determined using synchrotron X-ray diffraction and optical and electron microscopy. The full-Heusler phase is observed to be semi-coherent with the half-Heusler majority phase. Differential thermal analysis was performed to determine melting temperatures of the end-member compounds. The thermal conductivity is reduced with the introduction of a dispersed, full-Heusler phase within the half-Heusler material. This leads to an increased thermoelectric figure of merit, ZT, from 0.35 for the stoichiometric compound to 0.44 for TiNi1.15Sn. Beyond x = 0.15 ZT decreases due to a rise in thermal conductivity. Density functional theory calculations using hybrid functionals were performed to determine band alignments between the half- and full-Heusler compounds, as well as comparative energies of formation. The hybrid functional band structure of TiNiSn is presented as well.</description><subject>Applied physics</subject><subject>Density functional theory</subject><subject>Differential thermal analysis</subject><subject>Evolution</subject><subject>Figure of merit</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Induction melting</subject><subject>Levitation</subject><subject>Phase stability</subject><subject>Synchrotron radiation</subject><subject>Thermal conductivity</subject><subject>Thermoelectric materials</subject><subject>Tin base alloys</subject><subject>X-ray diffraction</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEURoMoWKsL3yDoysXUZDLJJEsp_kFRwboOd9IMTZlOxiQjdOc7-IY-iSl1cy8XDh_fPQhdUjKjRLBbOqukKBXnR2hCiVRFzTk5RhNCSlpIVatTdBbjhhBKJVMTtH1bQ7Q4Jmhc59IOQ7_CQ_CDDfmwX74bk_M99i1u3JBZZ_DS_X7_vOzHe4-h6_wu4tYHPOYg1-O0tmHrbWdNCpmGYeicgX1KPEcnLXTRXvzvKfp4uF_On4rF6-Pz_G5RGCZ5KioghpEVMEubVkoloBRQQVmDAdlSRQyVnEghmhUDVQKpa9HKhkvbEFELwabo6pDrY3I6GpesWRvf97mTprSkFd9D1wcov_s52pj0xo-hz710Scs6i2NMZermQJngYwy21UNwWwg7TYneK9dU_ytnf3ZgdXA</recordid><startdate>20140128</startdate><enddate>20140128</enddate><creator>Douglas, Jason E.</creator><creator>Birkel, Christina S.</creator><creator>Verma, Nisha</creator><creator>Miller, Victoria M.</creator><creator>Miao, Mao-Sheng</creator><creator>Stucky, Galen D.</creator><creator>Pollock, Tresa M.</creator><creator>Seshadri, Ram</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140128</creationdate><title>Phase stability and property evolution of biphasic Ti–Ni–Sn alloys for use in thermoelectric applications</title><author>Douglas, Jason E. ; Birkel, Christina S. ; Verma, Nisha ; Miller, Victoria M. ; Miao, Mao-Sheng ; Stucky, Galen D. ; Pollock, Tresa M. ; Seshadri, Ram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-4a0c30da3e1bf8896a26a4a27aca8f190c1850866bd3a92a0776f8b58eb067663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied physics</topic><topic>Density functional theory</topic><topic>Differential thermal analysis</topic><topic>Evolution</topic><topic>Figure of merit</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Induction melting</topic><topic>Levitation</topic><topic>Phase stability</topic><topic>Synchrotron radiation</topic><topic>Thermal conductivity</topic><topic>Thermoelectric materials</topic><topic>Tin base alloys</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Douglas, Jason E.</creatorcontrib><creatorcontrib>Birkel, Christina S.</creatorcontrib><creatorcontrib>Verma, Nisha</creatorcontrib><creatorcontrib>Miller, Victoria M.</creatorcontrib><creatorcontrib>Miao, Mao-Sheng</creatorcontrib><creatorcontrib>Stucky, Galen D.</creatorcontrib><creatorcontrib>Pollock, Tresa M.</creatorcontrib><creatorcontrib>Seshadri, Ram</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Douglas, Jason E.</au><au>Birkel, Christina S.</au><au>Verma, Nisha</au><au>Miller, Victoria M.</au><au>Miao, Mao-Sheng</au><au>Stucky, Galen D.</au><au>Pollock, Tresa M.</au><au>Seshadri, Ram</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase stability and property evolution of biphasic Ti–Ni–Sn alloys for use in thermoelectric applications</atitle><jtitle>Journal of applied physics</jtitle><date>2014-01-28</date><risdate>2014</risdate><volume>115</volume><issue>4</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>Thermoelectric properties and phase evolution have been studied in biphasic Ti–Ni–Sn materials containing full-Heusler TiNi2Sn embedded within half-Heusler thermoelectric TiNiSn. Materials, prepared by levitation induction melting followed by annealing, were of the nominal starting composition of TiNi1+xSn, with x between 0.00 and 0.25. Phases and microstructure were determined using synchrotron X-ray diffraction and optical and electron microscopy. The full-Heusler phase is observed to be semi-coherent with the half-Heusler majority phase. Differential thermal analysis was performed to determine melting temperatures of the end-member compounds. The thermal conductivity is reduced with the introduction of a dispersed, full-Heusler phase within the half-Heusler material. This leads to an increased thermoelectric figure of merit, ZT, from 0.35 for the stoichiometric compound to 0.44 for TiNi1.15Sn. Beyond x = 0.15 ZT decreases due to a rise in thermal conductivity. Density functional theory calculations using hybrid functionals were performed to determine band alignments between the half- and full-Heusler compounds, as well as comparative energies of formation. The hybrid functional band structure of TiNiSn is presented as well.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4862955</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2014-01, Vol.115 (4) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_osti_scitechconnect_1121456 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Density functional theory Differential thermal analysis Evolution Figure of merit Heat conductivity Heat transfer Induction melting Levitation Phase stability Synchrotron radiation Thermal conductivity Thermoelectric materials Tin base alloys X-ray diffraction |
title | Phase stability and property evolution of biphasic Ti–Ni–Sn alloys for use in thermoelectric applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A20%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20stability%20and%20property%20evolution%20of%20biphasic%20Ti%E2%80%93Ni%E2%80%93Sn%20alloys%20for%20use%20in%20thermoelectric%20applications&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Douglas,%20Jason%20E.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2014-01-28&rft.volume=115&rft.issue=4&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4862955&rft_dat=%3Cproquest_osti_%3E2127755339%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127755339&rft_id=info:pmid/&rfr_iscdi=true |