Fluctuating wall pressures measured beneath a supersonic turbulent boundary layer
Wind tunnel experiments up to Mach 3 have provided fluctuating wall-pressure spectra beneath a supersonic turbulent boundary layer to frequencies reaching 400 kHz by combining data from piezoresistive silicon pressure transducers effective at low- and mid-range frequencies and piezoelectric quartz s...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2011-07, Vol.23 (7), p.075110-075110-16 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 075110-16 |
---|---|
container_issue | 7 |
container_start_page | 075110 |
container_title | Physics of fluids (1994) |
container_volume | 23 |
creator | Beresh, Steven J. Henfling, John F. Spillers, Russell W. Pruett, Brian O. M. |
description | Wind tunnel experiments up to Mach 3 have provided fluctuating wall-pressure spectra beneath a supersonic turbulent boundary layer to frequencies reaching 400 kHz by combining data from piezoresistive silicon pressure transducers effective at low- and mid-range frequencies and piezoelectric quartz sensors to detect high frequency events. Data were corrected for spatial attenuation at high frequencies and for wind-tunnel noise and vibration at low frequencies. The resulting power spectra revealed the ω
−1
dependence for fluctuations within the logarithmic region of the boundary layer but are essentially flat at low frequency and do not exhibit the theorized ω
2
dependence. When normalized by outer flow variables, a slight dependence upon the Reynolds number is detected, but Mach number is the dominant parameter. Normalization by inner flow variables is largely successful for the ω
−1
region but does not apply for lower frequencies. A comparison of the pressure fluctuation intensities with 50 years of historical data shows their reported magnitude chiefly is a function of the frequency response of the sensors. The present corrected data yield results in excess of the bulk of the historical data, but uncorrected data are consistent with lower magnitudes, suggesting that much of the historical compressible database may be biased low. |
doi_str_mv | 10.1063/1.3609271 |
format | Article |
fullrecord | <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1109409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>scitation_primary_10_1063_1_3609271Fluctuating_wall_pre</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-b26d3d3f04f6d9d0a3af67156ebc41350246cfe0efe59a648692a2e672482b773</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK4e_AdB8OCha7522l4EWVwVFkTQc0jTiVvppkuSIv57W7qIFy8zc3jmneEh5JKzBWcgb_lCAitFzo_IjLOizHIAOB7nnGUAkp-Ssxg_GWOyFDAjr-u2t6k3qfEf9Mu0Ld0HjLEfCt2hGYeaVujRpC01NPZ7DLHzjaWpD1Xfok-06npfm_BNW_ON4ZycONNGvDj0OXlfP7ytnrLNy-Pz6n6TWZlDyioBtaylY8pBXdbMSOMg50vAyioul0wosA4ZOlyWBlQBpTACIReqEFWeyzm5mnK7mBodbZPQbm3nPdqkOWelYuUA3UyQDV2MAZ3eh2Y3_Ko506MwzfVB2MBeT-zeRGtaF4y3TfxdEEopXgAbuLuJG28O4jr_f-gfu3q0O5AofwBs8oBw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fluctuating wall pressures measured beneath a supersonic turbulent boundary layer</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Beresh, Steven J. ; Henfling, John F. ; Spillers, Russell W. ; Pruett, Brian O. M.</creator><creatorcontrib>Beresh, Steven J. ; Henfling, John F. ; Spillers, Russell W. ; Pruett, Brian O. M. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Wind tunnel experiments up to Mach 3 have provided fluctuating wall-pressure spectra beneath a supersonic turbulent boundary layer to frequencies reaching 400 kHz by combining data from piezoresistive silicon pressure transducers effective at low- and mid-range frequencies and piezoelectric quartz sensors to detect high frequency events. Data were corrected for spatial attenuation at high frequencies and for wind-tunnel noise and vibration at low frequencies. The resulting power spectra revealed the ω
−1
dependence for fluctuations within the logarithmic region of the boundary layer but are essentially flat at low frequency and do not exhibit the theorized ω
2
dependence. When normalized by outer flow variables, a slight dependence upon the Reynolds number is detected, but Mach number is the dominant parameter. Normalization by inner flow variables is largely successful for the ω
−1
region but does not apply for lower frequencies. A comparison of the pressure fluctuation intensities with 50 years of historical data shows their reported magnitude chiefly is a function of the frequency response of the sensors. The present corrected data yield results in excess of the bulk of the historical data, but uncorrected data are consistent with lower magnitudes, suggesting that much of the historical compressible database may be biased low.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.3609271</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville, NY: American Institute of Physics</publisher><subject>Boundary layer and shear turbulence ; Compressible flows; shock and detonation phenomena ; Exact sciences and technology ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Instrumentation for fluid dynamics ; Physics ; Supersonic and hypersonic flows ; Turbulent flows, convection, and heat transfer</subject><ispartof>Physics of fluids (1994), 2011-07, Vol.23 (7), p.075110-075110-16</ispartof><rights>2011 American Institute of Physics</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-b26d3d3f04f6d9d0a3af67156ebc41350246cfe0efe59a648692a2e672482b773</citedby><cites>FETCH-LOGICAL-c376t-b26d3d3f04f6d9d0a3af67156ebc41350246cfe0efe59a648692a2e672482b773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,790,881,1553,4498,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24441860$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1109409$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Beresh, Steven J.</creatorcontrib><creatorcontrib>Henfling, John F.</creatorcontrib><creatorcontrib>Spillers, Russell W.</creatorcontrib><creatorcontrib>Pruett, Brian O. M.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Fluctuating wall pressures measured beneath a supersonic turbulent boundary layer</title><title>Physics of fluids (1994)</title><description>Wind tunnel experiments up to Mach 3 have provided fluctuating wall-pressure spectra beneath a supersonic turbulent boundary layer to frequencies reaching 400 kHz by combining data from piezoresistive silicon pressure transducers effective at low- and mid-range frequencies and piezoelectric quartz sensors to detect high frequency events. Data were corrected for spatial attenuation at high frequencies and for wind-tunnel noise and vibration at low frequencies. The resulting power spectra revealed the ω
−1
dependence for fluctuations within the logarithmic region of the boundary layer but are essentially flat at low frequency and do not exhibit the theorized ω
2
dependence. When normalized by outer flow variables, a slight dependence upon the Reynolds number is detected, but Mach number is the dominant parameter. Normalization by inner flow variables is largely successful for the ω
−1
region but does not apply for lower frequencies. A comparison of the pressure fluctuation intensities with 50 years of historical data shows their reported magnitude chiefly is a function of the frequency response of the sensors. The present corrected data yield results in excess of the bulk of the historical data, but uncorrected data are consistent with lower magnitudes, suggesting that much of the historical compressible database may be biased low.</description><subject>Boundary layer and shear turbulence</subject><subject>Compressible flows; shock and detonation phenomena</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Instrumentation for fluid dynamics</subject><subject>Physics</subject><subject>Supersonic and hypersonic flows</subject><subject>Turbulent flows, convection, and heat transfer</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK4e_AdB8OCha7522l4EWVwVFkTQc0jTiVvppkuSIv57W7qIFy8zc3jmneEh5JKzBWcgb_lCAitFzo_IjLOizHIAOB7nnGUAkp-Ssxg_GWOyFDAjr-u2t6k3qfEf9Mu0Ld0HjLEfCt2hGYeaVujRpC01NPZ7DLHzjaWpD1Xfok-06npfm_BNW_ON4ZycONNGvDj0OXlfP7ytnrLNy-Pz6n6TWZlDyioBtaylY8pBXdbMSOMg50vAyioul0wosA4ZOlyWBlQBpTACIReqEFWeyzm5mnK7mBodbZPQbm3nPdqkOWelYuUA3UyQDV2MAZ3eh2Y3_Ko506MwzfVB2MBeT-zeRGtaF4y3TfxdEEopXgAbuLuJG28O4jr_f-gfu3q0O5AofwBs8oBw</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Beresh, Steven J.</creator><creator>Henfling, John F.</creator><creator>Spillers, Russell W.</creator><creator>Pruett, Brian O. M.</creator><general>American Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20110701</creationdate><title>Fluctuating wall pressures measured beneath a supersonic turbulent boundary layer</title><author>Beresh, Steven J. ; Henfling, John F. ; Spillers, Russell W. ; Pruett, Brian O. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-b26d3d3f04f6d9d0a3af67156ebc41350246cfe0efe59a648692a2e672482b773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Boundary layer and shear turbulence</topic><topic>Compressible flows; shock and detonation phenomena</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Instrumentation for fluid dynamics</topic><topic>Physics</topic><topic>Supersonic and hypersonic flows</topic><topic>Turbulent flows, convection, and heat transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beresh, Steven J.</creatorcontrib><creatorcontrib>Henfling, John F.</creatorcontrib><creatorcontrib>Spillers, Russell W.</creatorcontrib><creatorcontrib>Pruett, Brian O. M.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beresh, Steven J.</au><au>Henfling, John F.</au><au>Spillers, Russell W.</au><au>Pruett, Brian O. M.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluctuating wall pressures measured beneath a supersonic turbulent boundary layer</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>23</volume><issue>7</issue><spage>075110</spage><epage>075110-16</epage><pages>075110-075110-16</pages><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Wind tunnel experiments up to Mach 3 have provided fluctuating wall-pressure spectra beneath a supersonic turbulent boundary layer to frequencies reaching 400 kHz by combining data from piezoresistive silicon pressure transducers effective at low- and mid-range frequencies and piezoelectric quartz sensors to detect high frequency events. Data were corrected for spatial attenuation at high frequencies and for wind-tunnel noise and vibration at low frequencies. The resulting power spectra revealed the ω
−1
dependence for fluctuations within the logarithmic region of the boundary layer but are essentially flat at low frequency and do not exhibit the theorized ω
2
dependence. When normalized by outer flow variables, a slight dependence upon the Reynolds number is detected, but Mach number is the dominant parameter. Normalization by inner flow variables is largely successful for the ω
−1
region but does not apply for lower frequencies. A comparison of the pressure fluctuation intensities with 50 years of historical data shows their reported magnitude chiefly is a function of the frequency response of the sensors. The present corrected data yield results in excess of the bulk of the historical data, but uncorrected data are consistent with lower magnitudes, suggesting that much of the historical compressible database may be biased low.</abstract><cop>Melville, NY</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3609271</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2011-07, Vol.23 (7), p.075110-075110-16 |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_osti_scitechconnect_1109409 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Boundary layer and shear turbulence Compressible flows shock and detonation phenomena Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) Instrumentation for fluid dynamics Physics Supersonic and hypersonic flows Turbulent flows, convection, and heat transfer |
title | Fluctuating wall pressures measured beneath a supersonic turbulent boundary layer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T02%3A29%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluctuating%20wall%20pressures%20measured%20beneath%20a%20supersonic%20turbulent%20boundary%20layer&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Beresh,%20Steven%20J.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2011-07-01&rft.volume=23&rft.issue=7&rft.spage=075110&rft.epage=075110-16&rft.pages=075110-075110-16&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/1.3609271&rft_dat=%3Cscitation_osti_%3Escitation_primary_10_1063_1_3609271Fluctuating_wall_pre%3C/scitation_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |