Time-periodic solutions in an Einstein AdS-massless-scalar-field system

We construct time-periodic solutions for a system of a self-gravitating massless scalar field, with a negative cosmological constant, in d+1 spacetime dimensions at spherical symmetry, both perturbatively and numerically. We estimate the convergence radius of the formally obtained perturbative serie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2013-08, Vol.111 (5), p.051102-051102, Article 051102
Hauptverfasser: Maliborski, Maciej, Rostworowski, Andrzej
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 051102
container_issue 5
container_start_page 051102
container_title Physical review letters
container_volume 111
creator Maliborski, Maciej
Rostworowski, Andrzej
description We construct time-periodic solutions for a system of a self-gravitating massless scalar field, with a negative cosmological constant, in d+1 spacetime dimensions at spherical symmetry, both perturbatively and numerically. We estimate the convergence radius of the formally obtained perturbative series and argue that it is greater then zero. Moreover, this estimate coincides with the boundary of the convergence domain of our numerical method and the threshold for the black-hole formation. Then we confirm our results with a direct numerical evolution. This also gives strong evidence for the nonlinear stability of the constructed time-periodic solutions.
doi_str_mv 10.1103/physrevlett.111.051102
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1104360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1426510792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-131661af1f793d6ce801653ddc171e422350e864338e2ffc2501f61b85cee6d13</originalsourceid><addsrcrecordid>eNo9kNtKxDAQhoMo7np4BSleeROdSZq0vVxkXYUFxcN1qekUIz3ZyS7s2xtZ9WqGn--fgU-IC4RrRNA348eOJ9q2FEIM8BpMjNWBmCNkhcwQ00MxB9AoC4BsJk6YPwEAlc2PxUzpwiid41ysXn1HcqTJD7V3CQ_tJvih58T3SdUnS99zoLgv6hfZVcwtMUt2VVtNsvHU1gnvItGdiaOmapnOf-epeLtbvt7ey_Xj6uF2sZbOgAkSNVqLVYNNVujaOsoBrdF17TBDSpXSBii3qdY5qaZxygA2Ft9z44hsjfpUXO7vDhx8yc4Hch9u6HtyoYwKUm0hQld7aJyGrw1xKDvPjtq26mnYcImpsuZHlIqo3aNuGjgabcpx8l017UqEn3u6fIqmn2m7jqZjgOXedCxe_P7YvHdU_9f-1OpvgrZ7zw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1426510792</pqid></control><display><type>article</type><title>Time-periodic solutions in an Einstein AdS-massless-scalar-field system</title><source>American Physical Society Journals</source><creator>Maliborski, Maciej ; Rostworowski, Andrzej</creator><creatorcontrib>Maliborski, Maciej ; Rostworowski, Andrzej</creatorcontrib><description>We construct time-periodic solutions for a system of a self-gravitating massless scalar field, with a negative cosmological constant, in d+1 spacetime dimensions at spherical symmetry, both perturbatively and numerically. We estimate the convergence radius of the formally obtained perturbative series and argue that it is greater then zero. Moreover, this estimate coincides with the boundary of the convergence domain of our numerical method and the threshold for the black-hole formation. Then we confirm our results with a direct numerical evolution. This also gives strong evidence for the nonlinear stability of the constructed time-periodic solutions.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.111.051102</identifier><identifier>PMID: 23952381</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><ispartof>Physical review letters, 2013-08, Vol.111 (5), p.051102-051102, Article 051102</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-131661af1f793d6ce801653ddc171e422350e864338e2ffc2501f61b85cee6d13</citedby><cites>FETCH-LOGICAL-c505t-131661af1f793d6ce801653ddc171e422350e864338e2ffc2501f61b85cee6d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23952381$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1104360$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Maliborski, Maciej</creatorcontrib><creatorcontrib>Rostworowski, Andrzej</creatorcontrib><title>Time-periodic solutions in an Einstein AdS-massless-scalar-field system</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We construct time-periodic solutions for a system of a self-gravitating massless scalar field, with a negative cosmological constant, in d+1 spacetime dimensions at spherical symmetry, both perturbatively and numerically. We estimate the convergence radius of the formally obtained perturbative series and argue that it is greater then zero. Moreover, this estimate coincides with the boundary of the convergence domain of our numerical method and the threshold for the black-hole formation. Then we confirm our results with a direct numerical evolution. This also gives strong evidence for the nonlinear stability of the constructed time-periodic solutions.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kNtKxDAQhoMo7np4BSleeROdSZq0vVxkXYUFxcN1qekUIz3ZyS7s2xtZ9WqGn--fgU-IC4RrRNA348eOJ9q2FEIM8BpMjNWBmCNkhcwQ00MxB9AoC4BsJk6YPwEAlc2PxUzpwiid41ysXn1HcqTJD7V3CQ_tJvih58T3SdUnS99zoLgv6hfZVcwtMUt2VVtNsvHU1gnvItGdiaOmapnOf-epeLtbvt7ey_Xj6uF2sZbOgAkSNVqLVYNNVujaOsoBrdF17TBDSpXSBii3qdY5qaZxygA2Ft9z44hsjfpUXO7vDhx8yc4Hch9u6HtyoYwKUm0hQld7aJyGrw1xKDvPjtq26mnYcImpsuZHlIqo3aNuGjgabcpx8l017UqEn3u6fIqmn2m7jqZjgOXedCxe_P7YvHdU_9f-1OpvgrZ7zw</recordid><startdate>20130802</startdate><enddate>20130802</enddate><creator>Maliborski, Maciej</creator><creator>Rostworowski, Andrzej</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20130802</creationdate><title>Time-periodic solutions in an Einstein AdS-massless-scalar-field system</title><author>Maliborski, Maciej ; Rostworowski, Andrzej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-131661af1f793d6ce801653ddc171e422350e864338e2ffc2501f61b85cee6d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maliborski, Maciej</creatorcontrib><creatorcontrib>Rostworowski, Andrzej</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maliborski, Maciej</au><au>Rostworowski, Andrzej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-periodic solutions in an Einstein AdS-massless-scalar-field system</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2013-08-02</date><risdate>2013</risdate><volume>111</volume><issue>5</issue><spage>051102</spage><epage>051102</epage><pages>051102-051102</pages><artnum>051102</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We construct time-periodic solutions for a system of a self-gravitating massless scalar field, with a negative cosmological constant, in d+1 spacetime dimensions at spherical symmetry, both perturbatively and numerically. We estimate the convergence radius of the formally obtained perturbative series and argue that it is greater then zero. Moreover, this estimate coincides with the boundary of the convergence domain of our numerical method and the threshold for the black-hole formation. Then we confirm our results with a direct numerical evolution. This also gives strong evidence for the nonlinear stability of the constructed time-periodic solutions.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>23952381</pmid><doi>10.1103/physrevlett.111.051102</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2013-08, Vol.111 (5), p.051102-051102, Article 051102
issn 0031-9007
1079-7114
language eng
recordid cdi_osti_scitechconnect_1104360
source American Physical Society Journals
title Time-periodic solutions in an Einstein AdS-massless-scalar-field system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-periodic%20solutions%20in%20an%20Einstein%20AdS-massless-scalar-field%20system&rft.jtitle=Physical%20review%20letters&rft.au=Maliborski,%20Maciej&rft.date=2013-08-02&rft.volume=111&rft.issue=5&rft.spage=051102&rft.epage=051102&rft.pages=051102-051102&rft.artnum=051102&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.111.051102&rft_dat=%3Cproquest_osti_%3E1426510792%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1426510792&rft_id=info:pmid/23952381&rfr_iscdi=true