Time-periodic solutions in an Einstein AdS-massless-scalar-field system
We construct time-periodic solutions for a system of a self-gravitating massless scalar field, with a negative cosmological constant, in d+1 spacetime dimensions at spherical symmetry, both perturbatively and numerically. We estimate the convergence radius of the formally obtained perturbative serie...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2013-08, Vol.111 (5), p.051102-051102, Article 051102 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 051102 |
---|---|
container_issue | 5 |
container_start_page | 051102 |
container_title | Physical review letters |
container_volume | 111 |
creator | Maliborski, Maciej Rostworowski, Andrzej |
description | We construct time-periodic solutions for a system of a self-gravitating massless scalar field, with a negative cosmological constant, in d+1 spacetime dimensions at spherical symmetry, both perturbatively and numerically. We estimate the convergence radius of the formally obtained perturbative series and argue that it is greater then zero. Moreover, this estimate coincides with the boundary of the convergence domain of our numerical method and the threshold for the black-hole formation. Then we confirm our results with a direct numerical evolution. This also gives strong evidence for the nonlinear stability of the constructed time-periodic solutions. |
doi_str_mv | 10.1103/physrevlett.111.051102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1104360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1426510792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-131661af1f793d6ce801653ddc171e422350e864338e2ffc2501f61b85cee6d13</originalsourceid><addsrcrecordid>eNo9kNtKxDAQhoMo7np4BSleeROdSZq0vVxkXYUFxcN1qekUIz3ZyS7s2xtZ9WqGn--fgU-IC4RrRNA348eOJ9q2FEIM8BpMjNWBmCNkhcwQ00MxB9AoC4BsJk6YPwEAlc2PxUzpwiid41ysXn1HcqTJD7V3CQ_tJvih58T3SdUnS99zoLgv6hfZVcwtMUt2VVtNsvHU1gnvItGdiaOmapnOf-epeLtbvt7ey_Xj6uF2sZbOgAkSNVqLVYNNVujaOsoBrdF17TBDSpXSBii3qdY5qaZxygA2Ft9z44hsjfpUXO7vDhx8yc4Hch9u6HtyoYwKUm0hQld7aJyGrw1xKDvPjtq26mnYcImpsuZHlIqo3aNuGjgabcpx8l017UqEn3u6fIqmn2m7jqZjgOXedCxe_P7YvHdU_9f-1OpvgrZ7zw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1426510792</pqid></control><display><type>article</type><title>Time-periodic solutions in an Einstein AdS-massless-scalar-field system</title><source>American Physical Society Journals</source><creator>Maliborski, Maciej ; Rostworowski, Andrzej</creator><creatorcontrib>Maliborski, Maciej ; Rostworowski, Andrzej</creatorcontrib><description>We construct time-periodic solutions for a system of a self-gravitating massless scalar field, with a negative cosmological constant, in d+1 spacetime dimensions at spherical symmetry, both perturbatively and numerically. We estimate the convergence radius of the formally obtained perturbative series and argue that it is greater then zero. Moreover, this estimate coincides with the boundary of the convergence domain of our numerical method and the threshold for the black-hole formation. Then we confirm our results with a direct numerical evolution. This also gives strong evidence for the nonlinear stability of the constructed time-periodic solutions.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.111.051102</identifier><identifier>PMID: 23952381</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><ispartof>Physical review letters, 2013-08, Vol.111 (5), p.051102-051102, Article 051102</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-131661af1f793d6ce801653ddc171e422350e864338e2ffc2501f61b85cee6d13</citedby><cites>FETCH-LOGICAL-c505t-131661af1f793d6ce801653ddc171e422350e864338e2ffc2501f61b85cee6d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23952381$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1104360$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Maliborski, Maciej</creatorcontrib><creatorcontrib>Rostworowski, Andrzej</creatorcontrib><title>Time-periodic solutions in an Einstein AdS-massless-scalar-field system</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We construct time-periodic solutions for a system of a self-gravitating massless scalar field, with a negative cosmological constant, in d+1 spacetime dimensions at spherical symmetry, both perturbatively and numerically. We estimate the convergence radius of the formally obtained perturbative series and argue that it is greater then zero. Moreover, this estimate coincides with the boundary of the convergence domain of our numerical method and the threshold for the black-hole formation. Then we confirm our results with a direct numerical evolution. This also gives strong evidence for the nonlinear stability of the constructed time-periodic solutions.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kNtKxDAQhoMo7np4BSleeROdSZq0vVxkXYUFxcN1qekUIz3ZyS7s2xtZ9WqGn--fgU-IC4RrRNA348eOJ9q2FEIM8BpMjNWBmCNkhcwQ00MxB9AoC4BsJk6YPwEAlc2PxUzpwiid41ysXn1HcqTJD7V3CQ_tJvih58T3SdUnS99zoLgv6hfZVcwtMUt2VVtNsvHU1gnvItGdiaOmapnOf-epeLtbvt7ey_Xj6uF2sZbOgAkSNVqLVYNNVujaOsoBrdF17TBDSpXSBii3qdY5qaZxygA2Ft9z44hsjfpUXO7vDhx8yc4Hch9u6HtyoYwKUm0hQld7aJyGrw1xKDvPjtq26mnYcImpsuZHlIqo3aNuGjgabcpx8l017UqEn3u6fIqmn2m7jqZjgOXedCxe_P7YvHdU_9f-1OpvgrZ7zw</recordid><startdate>20130802</startdate><enddate>20130802</enddate><creator>Maliborski, Maciej</creator><creator>Rostworowski, Andrzej</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20130802</creationdate><title>Time-periodic solutions in an Einstein AdS-massless-scalar-field system</title><author>Maliborski, Maciej ; Rostworowski, Andrzej</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-131661af1f793d6ce801653ddc171e422350e864338e2ffc2501f61b85cee6d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maliborski, Maciej</creatorcontrib><creatorcontrib>Rostworowski, Andrzej</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maliborski, Maciej</au><au>Rostworowski, Andrzej</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-periodic solutions in an Einstein AdS-massless-scalar-field system</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2013-08-02</date><risdate>2013</risdate><volume>111</volume><issue>5</issue><spage>051102</spage><epage>051102</epage><pages>051102-051102</pages><artnum>051102</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We construct time-periodic solutions for a system of a self-gravitating massless scalar field, with a negative cosmological constant, in d+1 spacetime dimensions at spherical symmetry, both perturbatively and numerically. We estimate the convergence radius of the formally obtained perturbative series and argue that it is greater then zero. Moreover, this estimate coincides with the boundary of the convergence domain of our numerical method and the threshold for the black-hole formation. Then we confirm our results with a direct numerical evolution. This also gives strong evidence for the nonlinear stability of the constructed time-periodic solutions.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>23952381</pmid><doi>10.1103/physrevlett.111.051102</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2013-08, Vol.111 (5), p.051102-051102, Article 051102 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_osti_scitechconnect_1104360 |
source | American Physical Society Journals |
title | Time-periodic solutions in an Einstein AdS-massless-scalar-field system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-periodic%20solutions%20in%20an%20Einstein%20AdS-massless-scalar-field%20system&rft.jtitle=Physical%20review%20letters&rft.au=Maliborski,%20Maciej&rft.date=2013-08-02&rft.volume=111&rft.issue=5&rft.spage=051102&rft.epage=051102&rft.pages=051102-051102&rft.artnum=051102&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.111.051102&rft_dat=%3Cproquest_osti_%3E1426510792%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1426510792&rft_id=info:pmid/23952381&rfr_iscdi=true |