Finite-size scaling at the jamming transition

We present an analysis of finite-size effects in jammed packings of N soft, frictionless spheres at zero temperature. There is a 1/N correction to the discrete jump in the contact number at the transition so that jammed packings exist only above isostaticity. As a result, the canonical power-law sca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2012-08, Vol.109 (9), p.095704-095704, Article 095704
Hauptverfasser: Goodrich, Carl P, Liu, Andrea J, Nagel, Sidney R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 095704
container_issue 9
container_start_page 095704
container_title Physical review letters
container_volume 109
creator Goodrich, Carl P
Liu, Andrea J
Nagel, Sidney R
description We present an analysis of finite-size effects in jammed packings of N soft, frictionless spheres at zero temperature. There is a 1/N correction to the discrete jump in the contact number at the transition so that jammed packings exist only above isostaticity. As a result, the canonical power-law scalings of the contact number and elastic moduli break down at low pressure. These quantities exhibit scaling collapse with a nontrivial scaling function, demonstrating that the jamming transition can be considered a phase transition. Scaling is achieved as a function of N in both two and three dimensions, indicating an upper critical dimension of 2.
doi_str_mv 10.1103/physrevlett.109.095704
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1103204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1080636373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-8e942ebd0f277f014174a0235c61c18318f009adacd8b0bf3469d620970448fd3</originalsourceid><addsrcrecordid>eNo9kEtLAzEQgIMotlb_Qlk8edk6eWweRylWhYIiel6y2axN2UfdpIX215u61dMwwzevD6EphhnGQO83q73v7a62IcwwqBmoTAA7Q2MMQqUCY3aOxgAUpwpAjNCV92sAwITLSzQiFIDIjI9RunCtCzb17mATb3Tt2q9EhySsbLLWTXNMQ69b74Lr2mt0Uena25tTnKDPxePH_Dldvj69zB-WqckgC6m0ihFblFARISrADAumgdDMcGywpFhWAEqX2pSygKKijKuSE1DxBSarkk7Q7TC388Hl3sQLzcp0bWtNyI__E2ARuhugTd99b60PeeO8sXWtW9ttfY5BAqecChpRPqCm73z0VuWb3jW630fod17-Fn2-290y-ow1lQ8-Y-P0tGNbNLb8b_sTSH8ASp9yMw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1080636373</pqid></control><display><type>article</type><title>Finite-size scaling at the jamming transition</title><source>American Physical Society Journals</source><creator>Goodrich, Carl P ; Liu, Andrea J ; Nagel, Sidney R</creator><creatorcontrib>Goodrich, Carl P ; Liu, Andrea J ; Nagel, Sidney R</creatorcontrib><description>We present an analysis of finite-size effects in jammed packings of N soft, frictionless spheres at zero temperature. There is a 1/N correction to the discrete jump in the contact number at the transition so that jammed packings exist only above isostaticity. As a result, the canonical power-law scalings of the contact number and elastic moduli break down at low pressure. These quantities exhibit scaling collapse with a nontrivial scaling function, demonstrating that the jamming transition can be considered a phase transition. Scaling is achieved as a function of N in both two and three dimensions, indicating an upper critical dimension of 2.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.109.095704</identifier><identifier>PMID: 23002856</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><ispartof>Physical review letters, 2012-08, Vol.109 (9), p.095704-095704, Article 095704</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-8e942ebd0f277f014174a0235c61c18318f009adacd8b0bf3469d620970448fd3</citedby><cites>FETCH-LOGICAL-c505t-8e942ebd0f277f014174a0235c61c18318f009adacd8b0bf3469d620970448fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,2877,2878,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23002856$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1103204$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Goodrich, Carl P</creatorcontrib><creatorcontrib>Liu, Andrea J</creatorcontrib><creatorcontrib>Nagel, Sidney R</creatorcontrib><title>Finite-size scaling at the jamming transition</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We present an analysis of finite-size effects in jammed packings of N soft, frictionless spheres at zero temperature. There is a 1/N correction to the discrete jump in the contact number at the transition so that jammed packings exist only above isostaticity. As a result, the canonical power-law scalings of the contact number and elastic moduli break down at low pressure. These quantities exhibit scaling collapse with a nontrivial scaling function, demonstrating that the jamming transition can be considered a phase transition. Scaling is achieved as a function of N in both two and three dimensions, indicating an upper critical dimension of 2.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEQgIMotlb_Qlk8edk6eWweRylWhYIiel6y2axN2UfdpIX215u61dMwwzevD6EphhnGQO83q73v7a62IcwwqBmoTAA7Q2MMQqUCY3aOxgAUpwpAjNCV92sAwITLSzQiFIDIjI9RunCtCzb17mATb3Tt2q9EhySsbLLWTXNMQ69b74Lr2mt0Uena25tTnKDPxePH_Dldvj69zB-WqckgC6m0ihFblFARISrADAumgdDMcGywpFhWAEqX2pSygKKijKuSE1DxBSarkk7Q7TC388Hl3sQLzcp0bWtNyI__E2ARuhugTd99b60PeeO8sXWtW9ttfY5BAqecChpRPqCm73z0VuWb3jW630fod17-Fn2-290y-ow1lQ8-Y-P0tGNbNLb8b_sTSH8ASp9yMw</recordid><startdate>20120827</startdate><enddate>20120827</enddate><creator>Goodrich, Carl P</creator><creator>Liu, Andrea J</creator><creator>Nagel, Sidney R</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20120827</creationdate><title>Finite-size scaling at the jamming transition</title><author>Goodrich, Carl P ; Liu, Andrea J ; Nagel, Sidney R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-8e942ebd0f277f014174a0235c61c18318f009adacd8b0bf3469d620970448fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goodrich, Carl P</creatorcontrib><creatorcontrib>Liu, Andrea J</creatorcontrib><creatorcontrib>Nagel, Sidney R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goodrich, Carl P</au><au>Liu, Andrea J</au><au>Nagel, Sidney R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-size scaling at the jamming transition</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2012-08-27</date><risdate>2012</risdate><volume>109</volume><issue>9</issue><spage>095704</spage><epage>095704</epage><pages>095704-095704</pages><artnum>095704</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We present an analysis of finite-size effects in jammed packings of N soft, frictionless spheres at zero temperature. There is a 1/N correction to the discrete jump in the contact number at the transition so that jammed packings exist only above isostaticity. As a result, the canonical power-law scalings of the contact number and elastic moduli break down at low pressure. These quantities exhibit scaling collapse with a nontrivial scaling function, demonstrating that the jamming transition can be considered a phase transition. Scaling is achieved as a function of N in both two and three dimensions, indicating an upper critical dimension of 2.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>23002856</pmid><doi>10.1103/physrevlett.109.095704</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2012-08, Vol.109 (9), p.095704-095704, Article 095704
issn 0031-9007
1079-7114
language eng
recordid cdi_osti_scitechconnect_1103204
source American Physical Society Journals
title Finite-size scaling at the jamming transition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T15%3A09%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-size%20scaling%20at%20the%20jamming%20transition&rft.jtitle=Physical%20review%20letters&rft.au=Goodrich,%20Carl%20P&rft.date=2012-08-27&rft.volume=109&rft.issue=9&rft.spage=095704&rft.epage=095704&rft.pages=095704-095704&rft.artnum=095704&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.109.095704&rft_dat=%3Cproquest_osti_%3E1080636373%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1080636373&rft_id=info:pmid/23002856&rfr_iscdi=true