Adiabatic state preparation of interacting two-level systems

We consider performing adiabatic rapid passage (ARP) using frequency-swept driving pulses to excite a collection of interacting two-level systems. Such a model arises in a wide range of many-body quantum systems, such as cavity QED or quantum dots, where a nonlinear component couples to light. We an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2012-07, Vol.109 (4), p.043002-043002, Article 043002
Hauptverfasser: Brierley, R T, Creatore, C, Littlewood, P B, Eastham, P R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 043002
container_issue 4
container_start_page 043002
container_title Physical review letters
container_volume 109
creator Brierley, R T
Creatore, C
Littlewood, P B
Eastham, P R
description We consider performing adiabatic rapid passage (ARP) using frequency-swept driving pulses to excite a collection of interacting two-level systems. Such a model arises in a wide range of many-body quantum systems, such as cavity QED or quantum dots, where a nonlinear component couples to light. We analyze the one-dimensional case using the Jordan-Wigner transformation, as well as the mean-field limit where the system is described by a Lipkin-Meshkov-Glick Hamiltonian. These limits provide complementary insights into the behavior of many-body systems under ARP, suggesting our results are generally applicable. We demonstrate that ARP can be used for state preparation in the presence of interactions, and identify the dependence of the required pulse shapes on the interaction strength. In general, interactions increase the pulse bandwidth required for successful state transfer, introducing new restrictions on the pulse forms required.
doi_str_mv 10.1103/PhysRevLett.109.043002
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1102970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1080637716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-599d9d8d439df1b8578679eac9c25d05f2101f8fa4cd50c224cd9636b284a60c3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMobk7_wiheedN5krRpAt6M4RcMFNHrkqanrtI2tckm-_dGOsWrAy_P-x54CJlTWFAK_Pp5s3cvuFuj9wsKagEJB2BHZEohU3FGaXJMpgCcxgogm5Az5z4AgDIhT8mEBViAZFNysyxrXWhfm8h57THqB-z1EALbRbaK6s7joI2vu_fIf9m4wR02kds7j607JyeVbhxeHO6MvN3dvq4e4vXT_eNquY4Nl8LHqVKlKmWZcFVWtJBpJkWmUBtlWFpCWjEKtJKVTkyZgmEsXCW4KJhMtADDZ-Ry3LXO17kztUezMbbr0Pg86GAqgwBdjVA_2M8tOp-3tTPYNLpDu3U5BQmCZxkVARUjagbr3IBV3g91q4d9gH72eP5Pb8hUPuoNxfnhx7Zosfyr_frk38ubeFo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1080637716</pqid></control><display><type>article</type><title>Adiabatic state preparation of interacting two-level systems</title><source>American Physical Society Journals</source><creator>Brierley, R T ; Creatore, C ; Littlewood, P B ; Eastham, P R</creator><creatorcontrib>Brierley, R T ; Creatore, C ; Littlewood, P B ; Eastham, P R</creatorcontrib><description>We consider performing adiabatic rapid passage (ARP) using frequency-swept driving pulses to excite a collection of interacting two-level systems. Such a model arises in a wide range of many-body quantum systems, such as cavity QED or quantum dots, where a nonlinear component couples to light. We analyze the one-dimensional case using the Jordan-Wigner transformation, as well as the mean-field limit where the system is described by a Lipkin-Meshkov-Glick Hamiltonian. These limits provide complementary insights into the behavior of many-body systems under ARP, suggesting our results are generally applicable. We demonstrate that ARP can be used for state preparation in the presence of interactions, and identify the dependence of the required pulse shapes on the interaction strength. In general, interactions increase the pulse bandwidth required for successful state transfer, introducing new restrictions on the pulse forms required.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.109.043002</identifier><identifier>PMID: 23006082</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><ispartof>Physical review letters, 2012-07, Vol.109 (4), p.043002-043002, Article 043002</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-599d9d8d439df1b8578679eac9c25d05f2101f8fa4cd50c224cd9636b284a60c3</citedby><cites>FETCH-LOGICAL-c386t-599d9d8d439df1b8578679eac9c25d05f2101f8fa4cd50c224cd9636b284a60c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23006082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1102970$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Brierley, R T</creatorcontrib><creatorcontrib>Creatore, C</creatorcontrib><creatorcontrib>Littlewood, P B</creatorcontrib><creatorcontrib>Eastham, P R</creatorcontrib><title>Adiabatic state preparation of interacting two-level systems</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We consider performing adiabatic rapid passage (ARP) using frequency-swept driving pulses to excite a collection of interacting two-level systems. Such a model arises in a wide range of many-body quantum systems, such as cavity QED or quantum dots, where a nonlinear component couples to light. We analyze the one-dimensional case using the Jordan-Wigner transformation, as well as the mean-field limit where the system is described by a Lipkin-Meshkov-Glick Hamiltonian. These limits provide complementary insights into the behavior of many-body systems under ARP, suggesting our results are generally applicable. We demonstrate that ARP can be used for state preparation in the presence of interactions, and identify the dependence of the required pulse shapes on the interaction strength. In general, interactions increase the pulse bandwidth required for successful state transfer, introducing new restrictions on the pulse forms required.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpNkF1LwzAUhoMobk7_wiheedN5krRpAt6M4RcMFNHrkqanrtI2tckm-_dGOsWrAy_P-x54CJlTWFAK_Pp5s3cvuFuj9wsKagEJB2BHZEohU3FGaXJMpgCcxgogm5Az5z4AgDIhT8mEBViAZFNysyxrXWhfm8h57THqB-z1EALbRbaK6s7joI2vu_fIf9m4wR02kds7j607JyeVbhxeHO6MvN3dvq4e4vXT_eNquY4Nl8LHqVKlKmWZcFVWtJBpJkWmUBtlWFpCWjEKtJKVTkyZgmEsXCW4KJhMtADDZ-Ry3LXO17kztUezMbbr0Pg86GAqgwBdjVA_2M8tOp-3tTPYNLpDu3U5BQmCZxkVARUjagbr3IBV3g91q4d9gH72eP5Pb8hUPuoNxfnhx7Zosfyr_frk38ubeFo</recordid><startdate>20120723</startdate><enddate>20120723</enddate><creator>Brierley, R T</creator><creator>Creatore, C</creator><creator>Littlewood, P B</creator><creator>Eastham, P R</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20120723</creationdate><title>Adiabatic state preparation of interacting two-level systems</title><author>Brierley, R T ; Creatore, C ; Littlewood, P B ; Eastham, P R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-599d9d8d439df1b8578679eac9c25d05f2101f8fa4cd50c224cd9636b284a60c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brierley, R T</creatorcontrib><creatorcontrib>Creatore, C</creatorcontrib><creatorcontrib>Littlewood, P B</creatorcontrib><creatorcontrib>Eastham, P R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brierley, R T</au><au>Creatore, C</au><au>Littlewood, P B</au><au>Eastham, P R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adiabatic state preparation of interacting two-level systems</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2012-07-23</date><risdate>2012</risdate><volume>109</volume><issue>4</issue><spage>043002</spage><epage>043002</epage><pages>043002-043002</pages><artnum>043002</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We consider performing adiabatic rapid passage (ARP) using frequency-swept driving pulses to excite a collection of interacting two-level systems. Such a model arises in a wide range of many-body quantum systems, such as cavity QED or quantum dots, where a nonlinear component couples to light. We analyze the one-dimensional case using the Jordan-Wigner transformation, as well as the mean-field limit where the system is described by a Lipkin-Meshkov-Glick Hamiltonian. These limits provide complementary insights into the behavior of many-body systems under ARP, suggesting our results are generally applicable. We demonstrate that ARP can be used for state preparation in the presence of interactions, and identify the dependence of the required pulse shapes on the interaction strength. In general, interactions increase the pulse bandwidth required for successful state transfer, introducing new restrictions on the pulse forms required.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>23006082</pmid><doi>10.1103/PhysRevLett.109.043002</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2012-07, Vol.109 (4), p.043002-043002, Article 043002
issn 0031-9007
1079-7114
language eng
recordid cdi_osti_scitechconnect_1102970
source American Physical Society Journals
title Adiabatic state preparation of interacting two-level systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A15%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adiabatic%20state%20preparation%20of%20interacting%20two-level%20systems&rft.jtitle=Physical%20review%20letters&rft.au=Brierley,%20R%20T&rft.date=2012-07-23&rft.volume=109&rft.issue=4&rft.spage=043002&rft.epage=043002&rft.pages=043002-043002&rft.artnum=043002&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.109.043002&rft_dat=%3Cproquest_osti_%3E1080637716%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1080637716&rft_id=info:pmid/23006082&rfr_iscdi=true