Kinetic origin of divergent decompression pathways in silicon and germanium

Silicon and germanium transform from diamond to β-tin structure under compression, but upon decompression they turn into metastable BC8 Si and ST12 Ge phases, respectively, instead of returning to the lowest-enthalpy diamond structure. Here we explore by first-principles calculations the atomistic m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2013-04, Vol.110 (16), p.165503-165503, Article 165503
Hauptverfasser: Wang, Jian-Tao, Chen, Changfeng, Mizuseki, Hiroshi, Kawazoe, Yoshiyuki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 165503
container_issue 16
container_start_page 165503
container_title Physical review letters
container_volume 110
creator Wang, Jian-Tao
Chen, Changfeng
Mizuseki, Hiroshi
Kawazoe, Yoshiyuki
description Silicon and germanium transform from diamond to β-tin structure under compression, but upon decompression they turn into metastable BC8 Si and ST12 Ge phases, respectively, instead of returning to the lowest-enthalpy diamond structure. Here we explore by first-principles calculations the atomistic mechanism underlying this intriguing phenomenon. We identify a body-centered tetragonal structure in I4(1)/a (C(4h)(6)) symmetry as a precursory state of the BC8 Si phase formed via a double cell bond-rotation mechanism with a low kinetic barrier. Kinetics also play a central role in selecting the decompression pathway in Ge via a trinary cell bond-twisting reconstruction process toward the ST12 Ge phase. In both cases, transformation back to energetically more favorable diamond structure is inhibited by the higher enthalpy barrier. These results explain experimental findings and highlight the kinetic origin of the divergent decompression pathways in Si and Ge.
doi_str_mv 10.1103/physrevlett.110.165503
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1102077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1353045306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-3b3bc634fc43d7e733bc3e2b4188db4324800786053d090de81de3e8d2e262bb3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWqt_QRZPXrZOMrvJ9ijiFxYU0fOym0zbyH6ZZCv996ZUPQxhXp6ZDA9jFxxmnANeD-utd7RpKIRdMOMyzwEP2ISDmqeK8-yQTQCQp3MAdcJOvf8EAC5kccxOBEo1l1xN2POz7ShYnfTOrmyX9MvE2A25FXUhMaT7dnDkve27ZKjC-rva-iRi3jZWx6zqTLIi11adHdszdrSsGk_nv--Ufdzfvd8-pouXh6fbm0Wqs1yEFGustcRsqTM0ihTGFknUGS8KU2cosiKeXEjI0cAcDBXcEFJhBAkp6hqn7HK_t_fBll7bQHodr-lIhzLKEKBUhK720OD6r5F8KFvrNTVN1VE_-pJjjpDFkhGVe1S73kery3Jwtq3ctuSw24fla7T9RptFtL0Lyr3tOHjx-8dYt2T-x_704g_0yX5d</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1353045306</pqid></control><display><type>article</type><title>Kinetic origin of divergent decompression pathways in silicon and germanium</title><source>American Physical Society</source><creator>Wang, Jian-Tao ; Chen, Changfeng ; Mizuseki, Hiroshi ; Kawazoe, Yoshiyuki</creator><creatorcontrib>Wang, Jian-Tao ; Chen, Changfeng ; Mizuseki, Hiroshi ; Kawazoe, Yoshiyuki</creatorcontrib><description>Silicon and germanium transform from diamond to β-tin structure under compression, but upon decompression they turn into metastable BC8 Si and ST12 Ge phases, respectively, instead of returning to the lowest-enthalpy diamond structure. Here we explore by first-principles calculations the atomistic mechanism underlying this intriguing phenomenon. We identify a body-centered tetragonal structure in I4(1)/a (C(4h)(6)) symmetry as a precursory state of the BC8 Si phase formed via a double cell bond-rotation mechanism with a low kinetic barrier. Kinetics also play a central role in selecting the decompression pathway in Ge via a trinary cell bond-twisting reconstruction process toward the ST12 Ge phase. In both cases, transformation back to energetically more favorable diamond structure is inhibited by the higher enthalpy barrier. These results explain experimental findings and highlight the kinetic origin of the divergent decompression pathways in Si and Ge.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.110.165503</identifier><identifier>PMID: 23679617</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><ispartof>Physical review letters, 2013-04, Vol.110 (16), p.165503-165503, Article 165503</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-3b3bc634fc43d7e733bc3e2b4188db4324800786053d090de81de3e8d2e262bb3</citedby><cites>FETCH-LOGICAL-c452t-3b3bc634fc43d7e733bc3e2b4188db4324800786053d090de81de3e8d2e262bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23679617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1102077$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jian-Tao</creatorcontrib><creatorcontrib>Chen, Changfeng</creatorcontrib><creatorcontrib>Mizuseki, Hiroshi</creatorcontrib><creatorcontrib>Kawazoe, Yoshiyuki</creatorcontrib><title>Kinetic origin of divergent decompression pathways in silicon and germanium</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>Silicon and germanium transform from diamond to β-tin structure under compression, but upon decompression they turn into metastable BC8 Si and ST12 Ge phases, respectively, instead of returning to the lowest-enthalpy diamond structure. Here we explore by first-principles calculations the atomistic mechanism underlying this intriguing phenomenon. We identify a body-centered tetragonal structure in I4(1)/a (C(4h)(6)) symmetry as a precursory state of the BC8 Si phase formed via a double cell bond-rotation mechanism with a low kinetic barrier. Kinetics also play a central role in selecting the decompression pathway in Ge via a trinary cell bond-twisting reconstruction process toward the ST12 Ge phase. In both cases, transformation back to energetically more favorable diamond structure is inhibited by the higher enthalpy barrier. These results explain experimental findings and highlight the kinetic origin of the divergent decompression pathways in Si and Ge.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWqt_QRZPXrZOMrvJ9ijiFxYU0fOym0zbyH6ZZCv996ZUPQxhXp6ZDA9jFxxmnANeD-utd7RpKIRdMOMyzwEP2ISDmqeK8-yQTQCQp3MAdcJOvf8EAC5kccxOBEo1l1xN2POz7ShYnfTOrmyX9MvE2A25FXUhMaT7dnDkve27ZKjC-rva-iRi3jZWx6zqTLIi11adHdszdrSsGk_nv--Ufdzfvd8-pouXh6fbm0Wqs1yEFGustcRsqTM0ihTGFknUGS8KU2cosiKeXEjI0cAcDBXcEFJhBAkp6hqn7HK_t_fBll7bQHodr-lIhzLKEKBUhK720OD6r5F8KFvrNTVN1VE_-pJjjpDFkhGVe1S73kery3Jwtq3ctuSw24fla7T9RptFtL0Lyr3tOHjx-8dYt2T-x_704g_0yX5d</recordid><startdate>20130415</startdate><enddate>20130415</enddate><creator>Wang, Jian-Tao</creator><creator>Chen, Changfeng</creator><creator>Mizuseki, Hiroshi</creator><creator>Kawazoe, Yoshiyuki</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20130415</creationdate><title>Kinetic origin of divergent decompression pathways in silicon and germanium</title><author>Wang, Jian-Tao ; Chen, Changfeng ; Mizuseki, Hiroshi ; Kawazoe, Yoshiyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-3b3bc634fc43d7e733bc3e2b4188db4324800786053d090de81de3e8d2e262bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jian-Tao</creatorcontrib><creatorcontrib>Chen, Changfeng</creatorcontrib><creatorcontrib>Mizuseki, Hiroshi</creatorcontrib><creatorcontrib>Kawazoe, Yoshiyuki</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jian-Tao</au><au>Chen, Changfeng</au><au>Mizuseki, Hiroshi</au><au>Kawazoe, Yoshiyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic origin of divergent decompression pathways in silicon and germanium</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2013-04-15</date><risdate>2013</risdate><volume>110</volume><issue>16</issue><spage>165503</spage><epage>165503</epage><pages>165503-165503</pages><artnum>165503</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Silicon and germanium transform from diamond to β-tin structure under compression, but upon decompression they turn into metastable BC8 Si and ST12 Ge phases, respectively, instead of returning to the lowest-enthalpy diamond structure. Here we explore by first-principles calculations the atomistic mechanism underlying this intriguing phenomenon. We identify a body-centered tetragonal structure in I4(1)/a (C(4h)(6)) symmetry as a precursory state of the BC8 Si phase formed via a double cell bond-rotation mechanism with a low kinetic barrier. Kinetics also play a central role in selecting the decompression pathway in Ge via a trinary cell bond-twisting reconstruction process toward the ST12 Ge phase. In both cases, transformation back to energetically more favorable diamond structure is inhibited by the higher enthalpy barrier. These results explain experimental findings and highlight the kinetic origin of the divergent decompression pathways in Si and Ge.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>23679617</pmid><doi>10.1103/physrevlett.110.165503</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2013-04, Vol.110 (16), p.165503-165503, Article 165503
issn 0031-9007
1079-7114
language eng
recordid cdi_osti_scitechconnect_1102077
source American Physical Society
title Kinetic origin of divergent decompression pathways in silicon and germanium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A04%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20origin%20of%20divergent%20decompression%20pathways%20in%20silicon%20and%20germanium&rft.jtitle=Physical%20review%20letters&rft.au=Wang,%20Jian-Tao&rft.date=2013-04-15&rft.volume=110&rft.issue=16&rft.spage=165503&rft.epage=165503&rft.pages=165503-165503&rft.artnum=165503&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.110.165503&rft_dat=%3Cproquest_osti_%3E1353045306%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1353045306&rft_id=info:pmid/23679617&rfr_iscdi=true