Spin-orbit coupling, spin relaxation, and spin diffusion in organic solids
We develop a systematic approach of quantifying spin-orbit coupling (SOC) and a rigorous theory of carrier spin relaxation caused by the SOC in disordered organic solids. The SOC mixes up and down spin in the polaron states and can be characterized by an admixture parameter γ2. This mixing effects s...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2011-03, Vol.106 (10), p.106602-106602, Article 106602 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 106602 |
---|---|
container_issue | 10 |
container_start_page | 106602 |
container_title | Physical review letters |
container_volume | 106 |
creator | Yu, Z G |
description | We develop a systematic approach of quantifying spin-orbit coupling (SOC) and a rigorous theory of carrier spin relaxation caused by the SOC in disordered organic solids. The SOC mixes up and down spin in the polaron states and can be characterized by an admixture parameter γ2. This mixing effects spin flips as polarons hop from one molecule to another. The spin relaxation time is τ(sf) = R2/(16γ2 D), and the spin diffusion length is L(s) = R/4|γ|, where R is the mean polaron hopping distance and D the carrier diffusion constant. The SOC in tris-(8-hydroxyquinoline) aluminum (Alq3) is particularly strong due to the orthogonal arrangement of the three ligands. The theory quantitatively explains the temperature-dependent spin diffusion in Alq3 from recent muon measurements. |
doi_str_mv | 10.1103/physrevlett.106.106602 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1100027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>861206778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-1bf667a5870172db97333a382c49eb023ff3aebd428ef1c5d1bd4240d954cf203</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EglL4hSpiw4bAjJ3ayRJVPFUJxGMdOY5djNI4xA6if4-rFBajmbm6c0c6hMwQLhGBXXUfG9_r70aHcInAt8WB7pEJgihSgZjtkwkAw7QAEEfk2PtPAEDK80NyRDHjRU5hQh5fO9umrq9sSJQbusa2q4vERzHpdSN_ZLCuvUhkW49ibY0ZfNSSuLh-JVurEu8aW_sTcmBk4_Xprk_J--3N2-I-XT7dPSyul6nK5hhSrAznQs5zAShoXRWCMSZZTlVW6AooM4ZJXdUZzbVBNa9xO2dQF_NMGQpsSs7GXOeDLb2yQasP5dpWq1BGOABURNP5aOp69zVoH8q19Uo3jWy1G3yZc6TAhcijk49O1TsfmZqy6-1a9psSYRvHyufI-kV_LyPrqPFyZB0PZ7sXQ7XW9f_ZH1z2Cy6JfUY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861206778</pqid></control><display><type>article</type><title>Spin-orbit coupling, spin relaxation, and spin diffusion in organic solids</title><source>American Physical Society Journals</source><creator>Yu, Z G</creator><creatorcontrib>Yu, Z G</creatorcontrib><description>We develop a systematic approach of quantifying spin-orbit coupling (SOC) and a rigorous theory of carrier spin relaxation caused by the SOC in disordered organic solids. The SOC mixes up and down spin in the polaron states and can be characterized by an admixture parameter γ2. This mixing effects spin flips as polarons hop from one molecule to another. The spin relaxation time is τ(sf) = R2/(16γ2 D), and the spin diffusion length is L(s) = R/4|γ|, where R is the mean polaron hopping distance and D the carrier diffusion constant. The SOC in tris-(8-hydroxyquinoline) aluminum (Alq3) is particularly strong due to the orthogonal arrangement of the three ligands. The theory quantitatively explains the temperature-dependent spin diffusion in Alq3 from recent muon measurements.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.106.106602</identifier><identifier>PMID: 21469820</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><ispartof>Physical review letters, 2011-03, Vol.106 (10), p.106602-106602, Article 106602</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-1bf667a5870172db97333a382c49eb023ff3aebd428ef1c5d1bd4240d954cf203</citedby><cites>FETCH-LOGICAL-c451t-1bf667a5870172db97333a382c49eb023ff3aebd428ef1c5d1bd4240d954cf203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21469820$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1100027$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Z G</creatorcontrib><title>Spin-orbit coupling, spin relaxation, and spin diffusion in organic solids</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We develop a systematic approach of quantifying spin-orbit coupling (SOC) and a rigorous theory of carrier spin relaxation caused by the SOC in disordered organic solids. The SOC mixes up and down spin in the polaron states and can be characterized by an admixture parameter γ2. This mixing effects spin flips as polarons hop from one molecule to another. The spin relaxation time is τ(sf) = R2/(16γ2 D), and the spin diffusion length is L(s) = R/4|γ|, where R is the mean polaron hopping distance and D the carrier diffusion constant. The SOC in tris-(8-hydroxyquinoline) aluminum (Alq3) is particularly strong due to the orthogonal arrangement of the three ligands. The theory quantitatively explains the temperature-dependent spin diffusion in Alq3 from recent muon measurements.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EglL4hSpiw4bAjJ3ayRJVPFUJxGMdOY5djNI4xA6if4-rFBajmbm6c0c6hMwQLhGBXXUfG9_r70aHcInAt8WB7pEJgihSgZjtkwkAw7QAEEfk2PtPAEDK80NyRDHjRU5hQh5fO9umrq9sSJQbusa2q4vERzHpdSN_ZLCuvUhkW49ibY0ZfNSSuLh-JVurEu8aW_sTcmBk4_Xprk_J--3N2-I-XT7dPSyul6nK5hhSrAznQs5zAShoXRWCMSZZTlVW6AooM4ZJXdUZzbVBNa9xO2dQF_NMGQpsSs7GXOeDLb2yQasP5dpWq1BGOABURNP5aOp69zVoH8q19Uo3jWy1G3yZc6TAhcijk49O1TsfmZqy6-1a9psSYRvHyufI-kV_LyPrqPFyZB0PZ7sXQ7XW9f_ZH1z2Cy6JfUY</recordid><startdate>20110311</startdate><enddate>20110311</enddate><creator>Yu, Z G</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20110311</creationdate><title>Spin-orbit coupling, spin relaxation, and spin diffusion in organic solids</title><author>Yu, Z G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-1bf667a5870172db97333a382c49eb023ff3aebd428ef1c5d1bd4240d954cf203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Z G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Z G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin-orbit coupling, spin relaxation, and spin diffusion in organic solids</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2011-03-11</date><risdate>2011</risdate><volume>106</volume><issue>10</issue><spage>106602</spage><epage>106602</epage><pages>106602-106602</pages><artnum>106602</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We develop a systematic approach of quantifying spin-orbit coupling (SOC) and a rigorous theory of carrier spin relaxation caused by the SOC in disordered organic solids. The SOC mixes up and down spin in the polaron states and can be characterized by an admixture parameter γ2. This mixing effects spin flips as polarons hop from one molecule to another. The spin relaxation time is τ(sf) = R2/(16γ2 D), and the spin diffusion length is L(s) = R/4|γ|, where R is the mean polaron hopping distance and D the carrier diffusion constant. The SOC in tris-(8-hydroxyquinoline) aluminum (Alq3) is particularly strong due to the orthogonal arrangement of the three ligands. The theory quantitatively explains the temperature-dependent spin diffusion in Alq3 from recent muon measurements.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>21469820</pmid><doi>10.1103/physrevlett.106.106602</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2011-03, Vol.106 (10), p.106602-106602, Article 106602 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_osti_scitechconnect_1100027 |
source | American Physical Society Journals |
title | Spin-orbit coupling, spin relaxation, and spin diffusion in organic solids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A08%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin-orbit%20coupling,%20spin%20relaxation,%20and%20spin%20diffusion%20in%20organic%20solids&rft.jtitle=Physical%20review%20letters&rft.au=Yu,%20Z%20G&rft.date=2011-03-11&rft.volume=106&rft.issue=10&rft.spage=106602&rft.epage=106602&rft.pages=106602-106602&rft.artnum=106602&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.106.106602&rft_dat=%3Cproquest_osti_%3E861206778%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861206778&rft_id=info:pmid/21469820&rfr_iscdi=true |