Spin-orbit coupling, spin relaxation, and spin diffusion in organic solids

We develop a systematic approach of quantifying spin-orbit coupling (SOC) and a rigorous theory of carrier spin relaxation caused by the SOC in disordered organic solids. The SOC mixes up and down spin in the polaron states and can be characterized by an admixture parameter γ2. This mixing effects s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2011-03, Vol.106 (10), p.106602-106602, Article 106602
1. Verfasser: Yu, Z G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106602
container_issue 10
container_start_page 106602
container_title Physical review letters
container_volume 106
creator Yu, Z G
description We develop a systematic approach of quantifying spin-orbit coupling (SOC) and a rigorous theory of carrier spin relaxation caused by the SOC in disordered organic solids. The SOC mixes up and down spin in the polaron states and can be characterized by an admixture parameter γ2. This mixing effects spin flips as polarons hop from one molecule to another. The spin relaxation time is τ(sf) = R2/(16γ2 D), and the spin diffusion length is L(s) = R/4|γ|, where R is the mean polaron hopping distance and D the carrier diffusion constant. The SOC in tris-(8-hydroxyquinoline) aluminum (Alq3) is particularly strong due to the orthogonal arrangement of the three ligands. The theory quantitatively explains the temperature-dependent spin diffusion in Alq3 from recent muon measurements.
doi_str_mv 10.1103/physrevlett.106.106602
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1100027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>861206778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-1bf667a5870172db97333a382c49eb023ff3aebd428ef1c5d1bd4240d954cf203</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EglL4hSpiw4bAjJ3ayRJVPFUJxGMdOY5djNI4xA6if4-rFBajmbm6c0c6hMwQLhGBXXUfG9_r70aHcInAt8WB7pEJgihSgZjtkwkAw7QAEEfk2PtPAEDK80NyRDHjRU5hQh5fO9umrq9sSJQbusa2q4vERzHpdSN_ZLCuvUhkW49ibY0ZfNSSuLh-JVurEu8aW_sTcmBk4_Xprk_J--3N2-I-XT7dPSyul6nK5hhSrAznQs5zAShoXRWCMSZZTlVW6AooM4ZJXdUZzbVBNa9xO2dQF_NMGQpsSs7GXOeDLb2yQasP5dpWq1BGOABURNP5aOp69zVoH8q19Uo3jWy1G3yZc6TAhcijk49O1TsfmZqy6-1a9psSYRvHyufI-kV_LyPrqPFyZB0PZ7sXQ7XW9f_ZH1z2Cy6JfUY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861206778</pqid></control><display><type>article</type><title>Spin-orbit coupling, spin relaxation, and spin diffusion in organic solids</title><source>American Physical Society Journals</source><creator>Yu, Z G</creator><creatorcontrib>Yu, Z G</creatorcontrib><description>We develop a systematic approach of quantifying spin-orbit coupling (SOC) and a rigorous theory of carrier spin relaxation caused by the SOC in disordered organic solids. The SOC mixes up and down spin in the polaron states and can be characterized by an admixture parameter γ2. This mixing effects spin flips as polarons hop from one molecule to another. The spin relaxation time is τ(sf) = R2/(16γ2 D), and the spin diffusion length is L(s) = R/4|γ|, where R is the mean polaron hopping distance and D the carrier diffusion constant. The SOC in tris-(8-hydroxyquinoline) aluminum (Alq3) is particularly strong due to the orthogonal arrangement of the three ligands. The theory quantitatively explains the temperature-dependent spin diffusion in Alq3 from recent muon measurements.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.106.106602</identifier><identifier>PMID: 21469820</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><ispartof>Physical review letters, 2011-03, Vol.106 (10), p.106602-106602, Article 106602</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-1bf667a5870172db97333a382c49eb023ff3aebd428ef1c5d1bd4240d954cf203</citedby><cites>FETCH-LOGICAL-c451t-1bf667a5870172db97333a382c49eb023ff3aebd428ef1c5d1bd4240d954cf203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21469820$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1100027$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Z G</creatorcontrib><title>Spin-orbit coupling, spin relaxation, and spin diffusion in organic solids</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We develop a systematic approach of quantifying spin-orbit coupling (SOC) and a rigorous theory of carrier spin relaxation caused by the SOC in disordered organic solids. The SOC mixes up and down spin in the polaron states and can be characterized by an admixture parameter γ2. This mixing effects spin flips as polarons hop from one molecule to another. The spin relaxation time is τ(sf) = R2/(16γ2 D), and the spin diffusion length is L(s) = R/4|γ|, where R is the mean polaron hopping distance and D the carrier diffusion constant. The SOC in tris-(8-hydroxyquinoline) aluminum (Alq3) is particularly strong due to the orthogonal arrangement of the three ligands. The theory quantitatively explains the temperature-dependent spin diffusion in Alq3 from recent muon measurements.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EglL4hSpiw4bAjJ3ayRJVPFUJxGMdOY5djNI4xA6if4-rFBajmbm6c0c6hMwQLhGBXXUfG9_r70aHcInAt8WB7pEJgihSgZjtkwkAw7QAEEfk2PtPAEDK80NyRDHjRU5hQh5fO9umrq9sSJQbusa2q4vERzHpdSN_ZLCuvUhkW49ibY0ZfNSSuLh-JVurEu8aW_sTcmBk4_Xprk_J--3N2-I-XT7dPSyul6nK5hhSrAznQs5zAShoXRWCMSZZTlVW6AooM4ZJXdUZzbVBNa9xO2dQF_NMGQpsSs7GXOeDLb2yQasP5dpWq1BGOABURNP5aOp69zVoH8q19Uo3jWy1G3yZc6TAhcijk49O1TsfmZqy6-1a9psSYRvHyufI-kV_LyPrqPFyZB0PZ7sXQ7XW9f_ZH1z2Cy6JfUY</recordid><startdate>20110311</startdate><enddate>20110311</enddate><creator>Yu, Z G</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20110311</creationdate><title>Spin-orbit coupling, spin relaxation, and spin diffusion in organic solids</title><author>Yu, Z G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-1bf667a5870172db97333a382c49eb023ff3aebd428ef1c5d1bd4240d954cf203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Z G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Z G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin-orbit coupling, spin relaxation, and spin diffusion in organic solids</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2011-03-11</date><risdate>2011</risdate><volume>106</volume><issue>10</issue><spage>106602</spage><epage>106602</epage><pages>106602-106602</pages><artnum>106602</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We develop a systematic approach of quantifying spin-orbit coupling (SOC) and a rigorous theory of carrier spin relaxation caused by the SOC in disordered organic solids. The SOC mixes up and down spin in the polaron states and can be characterized by an admixture parameter γ2. This mixing effects spin flips as polarons hop from one molecule to another. The spin relaxation time is τ(sf) = R2/(16γ2 D), and the spin diffusion length is L(s) = R/4|γ|, where R is the mean polaron hopping distance and D the carrier diffusion constant. The SOC in tris-(8-hydroxyquinoline) aluminum (Alq3) is particularly strong due to the orthogonal arrangement of the three ligands. The theory quantitatively explains the temperature-dependent spin diffusion in Alq3 from recent muon measurements.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>21469820</pmid><doi>10.1103/physrevlett.106.106602</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2011-03, Vol.106 (10), p.106602-106602, Article 106602
issn 0031-9007
1079-7114
language eng
recordid cdi_osti_scitechconnect_1100027
source American Physical Society Journals
title Spin-orbit coupling, spin relaxation, and spin diffusion in organic solids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A08%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin-orbit%20coupling,%20spin%20relaxation,%20and%20spin%20diffusion%20in%20organic%20solids&rft.jtitle=Physical%20review%20letters&rft.au=Yu,%20Z%20G&rft.date=2011-03-11&rft.volume=106&rft.issue=10&rft.spage=106602&rft.epage=106602&rft.pages=106602-106602&rft.artnum=106602&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.106.106602&rft_dat=%3Cproquest_osti_%3E861206778%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861206778&rft_id=info:pmid/21469820&rfr_iscdi=true