Fractional quantum Hall states at zero magnetic field

We present a simple prescription to flatten isolated Bloch bands with a nonzero Chern number. We first show that approximate flattening of bands with a nonzero Chern number is possible by tuning ratios of nearest-neighbor and next-nearest-neighbor hoppings in the Haldane model and, similarly, in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2011-06, Vol.106 (23), p.236804-236804, Article 236804
Hauptverfasser: Neupert, Titus, Santos, Luiz, Chamon, Claudio, Mudry, Christopher
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 236804
container_issue 23
container_start_page 236804
container_title Physical review letters
container_volume 106
creator Neupert, Titus
Santos, Luiz
Chamon, Claudio
Mudry, Christopher
description We present a simple prescription to flatten isolated Bloch bands with a nonzero Chern number. We first show that approximate flattening of bands with a nonzero Chern number is possible by tuning ratios of nearest-neighbor and next-nearest-neighbor hoppings in the Haldane model and, similarly, in the chiral-π-flux square lattice model. Then we show that perfect flattening can be attained with further range hoppings that decrease exponentially with distance. Finally, we add interactions to the model and present exact diagonalization results for a small system at 1/3 filling that support (i) the existence of a spectral gap, (ii) that the ground state is a topological state, and (iii) that the Hall conductance is quantized.
doi_str_mv 10.1103/physrevlett.106.236804
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1099525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>878594724</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-d0801a4824bb3971dc5c525c7780f9eb8066334c69406a6d4a41223176f6e16c3</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRbK3-hRLcuEq988g8llKsFQqK6DpMJhMbmSRtZlKov96RVFcXDt85Fz6E5hgWGAO9322PvrcHZ0NYYOALQrkEdoamGIRKBcbsHE0BKE4VgJigK--_AAATLi_RhGAhIKNsirJVr02ou1a7ZD_oNgxNstbOJT7oYH2iQ_Jt-y5p9GdrQ22SqrauvEYXlXbe3pzuDH2sHt-X63Tz8vS8fNikJgMW0hIkYM0kYUVBlcClyUxGMiOEhErZQgLnlDLDFQOueck0w4RQLHjFLeaGztDtuNv5UOfe1MGarena1pqQY1AqrkXoboR2fbcfrA95U3tjndOt7QafSyEzxQRhkeQjafrOR31VvuvrRvfHuJX_as1fo9Y3e9hErTHj-ag1FuenF0PR2PK_9ueR_gC6kHR4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>878594724</pqid></control><display><type>article</type><title>Fractional quantum Hall states at zero magnetic field</title><source>American Physical Society Journals</source><creator>Neupert, Titus ; Santos, Luiz ; Chamon, Claudio ; Mudry, Christopher</creator><creatorcontrib>Neupert, Titus ; Santos, Luiz ; Chamon, Claudio ; Mudry, Christopher</creatorcontrib><description>We present a simple prescription to flatten isolated Bloch bands with a nonzero Chern number. We first show that approximate flattening of bands with a nonzero Chern number is possible by tuning ratios of nearest-neighbor and next-nearest-neighbor hoppings in the Haldane model and, similarly, in the chiral-π-flux square lattice model. Then we show that perfect flattening can be attained with further range hoppings that decrease exponentially with distance. Finally, we add interactions to the model and present exact diagonalization results for a small system at 1/3 filling that support (i) the existence of a spectral gap, (ii) that the ground state is a topological state, and (iii) that the Hall conductance is quantized.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.106.236804</identifier><identifier>PMID: 21770534</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><ispartof>Physical review letters, 2011-06, Vol.106 (23), p.236804-236804, Article 236804</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-d0801a4824bb3971dc5c525c7780f9eb8066334c69406a6d4a41223176f6e16c3</citedby><cites>FETCH-LOGICAL-c504t-d0801a4824bb3971dc5c525c7780f9eb8066334c69406a6d4a41223176f6e16c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21770534$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1099525$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Neupert, Titus</creatorcontrib><creatorcontrib>Santos, Luiz</creatorcontrib><creatorcontrib>Chamon, Claudio</creatorcontrib><creatorcontrib>Mudry, Christopher</creatorcontrib><title>Fractional quantum Hall states at zero magnetic field</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We present a simple prescription to flatten isolated Bloch bands with a nonzero Chern number. We first show that approximate flattening of bands with a nonzero Chern number is possible by tuning ratios of nearest-neighbor and next-nearest-neighbor hoppings in the Haldane model and, similarly, in the chiral-π-flux square lattice model. Then we show that perfect flattening can be attained with further range hoppings that decrease exponentially with distance. Finally, we add interactions to the model and present exact diagonalization results for a small system at 1/3 filling that support (i) the existence of a spectral gap, (ii) that the ground state is a topological state, and (iii) that the Hall conductance is quantized.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRbK3-hRLcuEq988g8llKsFQqK6DpMJhMbmSRtZlKov96RVFcXDt85Fz6E5hgWGAO9322PvrcHZ0NYYOALQrkEdoamGIRKBcbsHE0BKE4VgJigK--_AAATLi_RhGAhIKNsirJVr02ou1a7ZD_oNgxNstbOJT7oYH2iQ_Jt-y5p9GdrQ22SqrauvEYXlXbe3pzuDH2sHt-X63Tz8vS8fNikJgMW0hIkYM0kYUVBlcClyUxGMiOEhErZQgLnlDLDFQOueck0w4RQLHjFLeaGztDtuNv5UOfe1MGarena1pqQY1AqrkXoboR2fbcfrA95U3tjndOt7QafSyEzxQRhkeQjafrOR31VvuvrRvfHuJX_as1fo9Y3e9hErTHj-ag1FuenF0PR2PK_9ueR_gC6kHR4</recordid><startdate>20110606</startdate><enddate>20110606</enddate><creator>Neupert, Titus</creator><creator>Santos, Luiz</creator><creator>Chamon, Claudio</creator><creator>Mudry, Christopher</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20110606</creationdate><title>Fractional quantum Hall states at zero magnetic field</title><author>Neupert, Titus ; Santos, Luiz ; Chamon, Claudio ; Mudry, Christopher</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-d0801a4824bb3971dc5c525c7780f9eb8066334c69406a6d4a41223176f6e16c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neupert, Titus</creatorcontrib><creatorcontrib>Santos, Luiz</creatorcontrib><creatorcontrib>Chamon, Claudio</creatorcontrib><creatorcontrib>Mudry, Christopher</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neupert, Titus</au><au>Santos, Luiz</au><au>Chamon, Claudio</au><au>Mudry, Christopher</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional quantum Hall states at zero magnetic field</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2011-06-06</date><risdate>2011</risdate><volume>106</volume><issue>23</issue><spage>236804</spage><epage>236804</epage><pages>236804-236804</pages><artnum>236804</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We present a simple prescription to flatten isolated Bloch bands with a nonzero Chern number. We first show that approximate flattening of bands with a nonzero Chern number is possible by tuning ratios of nearest-neighbor and next-nearest-neighbor hoppings in the Haldane model and, similarly, in the chiral-π-flux square lattice model. Then we show that perfect flattening can be attained with further range hoppings that decrease exponentially with distance. Finally, we add interactions to the model and present exact diagonalization results for a small system at 1/3 filling that support (i) the existence of a spectral gap, (ii) that the ground state is a topological state, and (iii) that the Hall conductance is quantized.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>21770534</pmid><doi>10.1103/physrevlett.106.236804</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2011-06, Vol.106 (23), p.236804-236804, Article 236804
issn 0031-9007
1079-7114
language eng
recordid cdi_osti_scitechconnect_1099525
source American Physical Society Journals
title Fractional quantum Hall states at zero magnetic field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A18%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20quantum%20Hall%20states%20at%20zero%20magnetic%20field&rft.jtitle=Physical%20review%20letters&rft.au=Neupert,%20Titus&rft.date=2011-06-06&rft.volume=106&rft.issue=23&rft.spage=236804&rft.epage=236804&rft.pages=236804-236804&rft.artnum=236804&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.106.236804&rft_dat=%3Cproquest_osti_%3E878594724%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=878594724&rft_id=info:pmid/21770534&rfr_iscdi=true