Majorana zero modes in a quantum Ising chain with longer-ranged interactions

A one-dimensional Ising model in a transverse field can be mapped onto a system of spinless fermions with p-wave superconductivity. In the weak-coupling BCS regime, it exhibits a zero-energy Majorana mode at each end of the chain. Here, we consider a variation of the model, which represents a superc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2012-01, Vol.85 (3), Article 035110
Hauptverfasser: Niu, Yuezhen, Chung, Suk Bum, Hsu, Chen-Hsuan, Mandal, Ipsita, Raghu, S., Chakravarty, Sudip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A one-dimensional Ising model in a transverse field can be mapped onto a system of spinless fermions with p-wave superconductivity. In the weak-coupling BCS regime, it exhibits a zero-energy Majorana mode at each end of the chain. Here, we consider a variation of the model, which represents a superconductor with longer-ranged kinetic energy and pairing amplitudes, as is likely to occur in more realistic systems. It possesses a richer zero-temperature phase diagram and has several quantum phase transitions. From an exact solution of the model, we find that these phases can be classified according to the number of Majorana zero modes of an open chain: zero, one, or two at each end. The model possesses a multicritical point where phases with zero, one, and two Majorana end modes meet. The number of Majorana modes at each end of the chain is identical to the topological winding number of the Anderson pseudospin vector that describes the BCS Hamiltonian. The topological classification of the phases requires a unitary time-reversal symmetry to be present. When this symmetry is broken, only the number of Majorana end modes modulo 2 can be used to distinguish two phases. In one of the regimes, the wave functions of the two phase-shifted Majorana zero modes decay exponentially in space but in an oscillatory manner. The wavelength of oscillation is identical to that in the asymptotic connected spin-spin correlation of the model in a transverse field, to which our model is dual.
ISSN:1098-0121
1550-235X
DOI:10.1103/PhysRevB.85.035110