Hole Trapping at Surfaces of m‑ZrO2 and m‑HfO2 Nanocrystals
We investigate hole trapping at the most prevalent facets of monoclinic zirconia (m-ZrO2) and hafnia (m-HfO2) nanocrystals using first-principles methods. The localization of holes at surface oxygen ions is more favorable than in the bulk crystal by up to ∼1 eV. This is caused mainly by the reductio...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2012-12, Vol.116 (49), p.25888-25897 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25897 |
---|---|
container_issue | 49 |
container_start_page | 25888 |
container_title | Journal of physical chemistry. C |
container_volume | 116 |
creator | Wolf, Matthew J McKenna, Keith P Shluger, Alexander L |
description | We investigate hole trapping at the most prevalent facets of monoclinic zirconia (m-ZrO2) and hafnia (m-HfO2) nanocrystals using first-principles methods. The localization of holes at surface oxygen ions is more favorable than in the bulk crystal by up to ∼1 eV. This is caused mainly by the reduction of the absolute value of the electrostatic potential at the surface ions with respect to the bulk and by the significant surface distortion caused by the hole localization. The mobility of holes at surfaces is much lower than that found in the bulk and is fairly isotropic. Unlike in cubic oxides, such as MgO and CaO, we do not find a significant driving force for preferential trapping of holes at steps on the m-ZrO2 surface. These fundamental results are relevant to mechanisms of water oxidation, photocatalysis, contact charging, and photodesorption. |
doi_str_mv | 10.1021/jp309525g |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1097972</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a331230696</sourcerecordid><originalsourceid>FETCH-LOGICAL-a242t-53f893182aca94a2ea5e514e9db8177bd6bcf25d0dd23d159e4c0fe042267e023</originalsourceid><addsrcrecordid>eNpFkM1KAzEUhYMoWKsL32AQXI4mN8mkWYkUdYRiF9aNm3CbnzqlnRmS6aI7X8FX9EmcWqmrcw98fFwOIZeM3jAK7HbZcqolyMURGTDNIVdCyuPDLdQpOUtpSanklPEBuSublc9mEdu2qhcZdtnrJga0PmVNyNbfn1_vcQoZ1u63lKEvL1g3Nm5Th6t0Tk5CH_7iL4fk7fFhNi7zyfTpeXw_yREEdLnkYaQ5GwFa1ALBo_SSCa_dfMSUmrtibgNIR50D7pjUXlgaPBUAhfIU-JBc7b1N6iqTbNV5-2Gbuva2M4xqpdUOut5DLSaLqxCxtlUybazWGLemVxWgCvbPoU1m2Wxi3b_eW8xuQnOYkP8A0N1i6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hole Trapping at Surfaces of m‑ZrO2 and m‑HfO2 Nanocrystals</title><source>ACS Publications</source><creator>Wolf, Matthew J ; McKenna, Keith P ; Shluger, Alexander L</creator><creatorcontrib>Wolf, Matthew J ; McKenna, Keith P ; Shluger, Alexander L ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>We investigate hole trapping at the most prevalent facets of monoclinic zirconia (m-ZrO2) and hafnia (m-HfO2) nanocrystals using first-principles methods. The localization of holes at surface oxygen ions is more favorable than in the bulk crystal by up to ∼1 eV. This is caused mainly by the reduction of the absolute value of the electrostatic potential at the surface ions with respect to the bulk and by the significant surface distortion caused by the hole localization. The mobility of holes at surfaces is much lower than that found in the bulk and is fairly isotropic. Unlike in cubic oxides, such as MgO and CaO, we do not find a significant driving force for preferential trapping of holes at steps on the m-ZrO2 surface. These fundamental results are relevant to mechanisms of water oxidation, photocatalysis, contact charging, and photodesorption.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp309525g</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cross-disciplinary physics: materials science; rheology ; Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals ; Environmental Molecular Sciences Laboratory ; Exact sciences and technology ; Materials science ; Nanopowders ; Nanoscale materials and structures: fabrication and characterization ; Physics</subject><ispartof>Journal of physical chemistry. C, 2012-12, Vol.116 (49), p.25888-25897</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp309525g$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp309525g$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26762761$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1097972$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wolf, Matthew J</creatorcontrib><creatorcontrib>McKenna, Keith P</creatorcontrib><creatorcontrib>Shluger, Alexander L</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Hole Trapping at Surfaces of m‑ZrO2 and m‑HfO2 Nanocrystals</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>We investigate hole trapping at the most prevalent facets of monoclinic zirconia (m-ZrO2) and hafnia (m-HfO2) nanocrystals using first-principles methods. The localization of holes at surface oxygen ions is more favorable than in the bulk crystal by up to ∼1 eV. This is caused mainly by the reduction of the absolute value of the electrostatic potential at the surface ions with respect to the bulk and by the significant surface distortion caused by the hole localization. The mobility of holes at surfaces is much lower than that found in the bulk and is fairly isotropic. Unlike in cubic oxides, such as MgO and CaO, we do not find a significant driving force for preferential trapping of holes at steps on the m-ZrO2 surface. These fundamental results are relevant to mechanisms of water oxidation, photocatalysis, contact charging, and photodesorption.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Nanopowders</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Physics</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpFkM1KAzEUhYMoWKsL32AQXI4mN8mkWYkUdYRiF9aNm3CbnzqlnRmS6aI7X8FX9EmcWqmrcw98fFwOIZeM3jAK7HbZcqolyMURGTDNIVdCyuPDLdQpOUtpSanklPEBuSublc9mEdu2qhcZdtnrJga0PmVNyNbfn1_vcQoZ1u63lKEvL1g3Nm5Th6t0Tk5CH_7iL4fk7fFhNi7zyfTpeXw_yREEdLnkYaQ5GwFa1ALBo_SSCa_dfMSUmrtibgNIR50D7pjUXlgaPBUAhfIU-JBc7b1N6iqTbNV5-2Gbuva2M4xqpdUOut5DLSaLqxCxtlUybazWGLemVxWgCvbPoU1m2Wxi3b_eW8xuQnOYkP8A0N1i6g</recordid><startdate>20121213</startdate><enddate>20121213</enddate><creator>Wolf, Matthew J</creator><creator>McKenna, Keith P</creator><creator>Shluger, Alexander L</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>OTOTI</scope></search><sort><creationdate>20121213</creationdate><title>Hole Trapping at Surfaces of m‑ZrO2 and m‑HfO2 Nanocrystals</title><author>Wolf, Matthew J ; McKenna, Keith P ; Shluger, Alexander L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a242t-53f893182aca94a2ea5e514e9db8177bd6bcf25d0dd23d159e4c0fe042267e023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Nanopowders</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolf, Matthew J</creatorcontrib><creatorcontrib>McKenna, Keith P</creatorcontrib><creatorcontrib>Shluger, Alexander L</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>Pascal-Francis</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolf, Matthew J</au><au>McKenna, Keith P</au><au>Shluger, Alexander L</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hole Trapping at Surfaces of m‑ZrO2 and m‑HfO2 Nanocrystals</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2012-12-13</date><risdate>2012</risdate><volume>116</volume><issue>49</issue><spage>25888</spage><epage>25897</epage><pages>25888-25897</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>We investigate hole trapping at the most prevalent facets of monoclinic zirconia (m-ZrO2) and hafnia (m-HfO2) nanocrystals using first-principles methods. The localization of holes at surface oxygen ions is more favorable than in the bulk crystal by up to ∼1 eV. This is caused mainly by the reduction of the absolute value of the electrostatic potential at the surface ions with respect to the bulk and by the significant surface distortion caused by the hole localization. The mobility of holes at surfaces is much lower than that found in the bulk and is fairly isotropic. Unlike in cubic oxides, such as MgO and CaO, we do not find a significant driving force for preferential trapping of holes at steps on the m-ZrO2 surface. These fundamental results are relevant to mechanisms of water oxidation, photocatalysis, contact charging, and photodesorption.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp309525g</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2012-12, Vol.116 (49), p.25888-25897 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_osti_scitechconnect_1097972 |
source | ACS Publications |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Cross-disciplinary physics: materials science rheology Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronic structure of nanoscale materials : clusters, nanoparticles, nanotubes, and nanocrystals Environmental Molecular Sciences Laboratory Exact sciences and technology Materials science Nanopowders Nanoscale materials and structures: fabrication and characterization Physics |
title | Hole Trapping at Surfaces of m‑ZrO2 and m‑HfO2 Nanocrystals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A04%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hole%20Trapping%20at%20Surfaces%20of%20m%E2%80%91ZrO2%20and%20m%E2%80%91HfO2%20Nanocrystals&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Wolf,%20Matthew%20J&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2012-12-13&rft.volume=116&rft.issue=49&rft.spage=25888&rft.epage=25897&rft.pages=25888-25897&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp309525g&rft_dat=%3Cacs_osti_%3Ea331230696%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |