Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers
The development of an electronic skin is critical to the realization of artificial intelligence that comes into direct contact with humans, and to biomedical applications such as prosthetic skin. To mimic the tactile sensing properties of natural skin, large arrays of pixel pressure sensors on a fle...
Gespeichert in:
Veröffentlicht in: | Nature materials 2010-10, Vol.9 (10), p.859-864 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 864 |
---|---|
container_issue | 10 |
container_start_page | 859 |
container_title | Nature materials |
container_volume | 9 |
creator | Mannsfeld, Stefan C. B. Tee, Benjamin C-K. Stoltenberg, Randall M. Chen, Christopher V. H-H. Barman, Soumendra Muir, Beinn V. O. Sokolov, Anatoliy N. Reese, Colin Bao, Zhenan |
description | The development of an electronic skin is critical to the realization of artificial intelligence that comes into direct contact with humans, and to biomedical applications such as prosthetic skin. To mimic the tactile sensing properties of natural skin, large arrays of pixel pressure sensors on a flexible and stretchable substrate are required. We demonstrate flexible, capacitive pressure sensors with unprecedented sensitivity and very short response times that can be inexpensively fabricated over large areas by microstructuring of thin films of the biocompatible elastomer polydimethylsiloxane. The pressure sensitivity of the microstructured films far surpassed that exhibited by unstructured elastomeric films of similar thickness, and is tunable by using different microstructures. The microstructured films were integrated into organic field-effect transistors as the dielectric layer, forming a new type of active sensor device with similarly excellent sensitivity and response times.
Flexible organic electronics could eventually be used to create electronic skin. Films of a pressure-sensitive microstructured elastomer are now used as the dielectric layer in organic field-effect transistors to create highly sensitive devices. The elastomer is also used in a matrix pressure sensor that can detect loads in numerous positions. |
doi_str_mv | 10.1038/nmat2834 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1087976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>818836368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-15f650315a384f91a6fd5273be810a801560f1048f38bc7c78d0d99ede8d8813</originalsourceid><addsrcrecordid>eNqFkU9P3DAQxS0EKhQq8QmqiEvbw4LHju3JEaG2W2klLhy4RYkz2TXKn63tAPvta9iFPfTAyZbeT2_ezGPsHPglcIlXQ19FgTI_YCeQGz3LteaHuz-AEMfscwgPnAtQSn9ix4KjVELCCbufu-Wq22SBhuCie6Ss7ejZ1R1la08hTJ5etdGH7MnFVdY768cQ_WRj0prMT3VNPmscdWSjdzbrqg35cMaO2qoL9GX3nrK7Xz_vbuazxe3vPzfXi5nNuYgzUK1WXIKqJOZtAZVuGyWMrAmBV8hBad4Cz7GVWFtjDTa8KQpqCBtEkKfsYmubMrkyWBfJruw4DClMCRxNYXSCvm2htR__ThRi2btgqeuqgcYplAiIUkuNH5JGKTCmEHw_-J18GCc_pFUTlEO6bqES9H0LvdwseGrLtXd95TcpWvnSXPnWXEK_7vymuqfmHXyrKgE_tkBI0rAkvx_4n9k_o6Khjg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>754152395</pqid></control><display><type>article</type><title>Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Mannsfeld, Stefan C. B. ; Tee, Benjamin C-K. ; Stoltenberg, Randall M. ; Chen, Christopher V. H-H. ; Barman, Soumendra ; Muir, Beinn V. O. ; Sokolov, Anatoliy N. ; Reese, Colin ; Bao, Zhenan</creator><creatorcontrib>Mannsfeld, Stefan C. B. ; Tee, Benjamin C-K. ; Stoltenberg, Randall M. ; Chen, Christopher V. H-H. ; Barman, Soumendra ; Muir, Beinn V. O. ; Sokolov, Anatoliy N. ; Reese, Colin ; Bao, Zhenan ; SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><description>The development of an electronic skin is critical to the realization of artificial intelligence that comes into direct contact with humans, and to biomedical applications such as prosthetic skin. To mimic the tactile sensing properties of natural skin, large arrays of pixel pressure sensors on a flexible and stretchable substrate are required. We demonstrate flexible, capacitive pressure sensors with unprecedented sensitivity and very short response times that can be inexpensively fabricated over large areas by microstructuring of thin films of the biocompatible elastomer polydimethylsiloxane. The pressure sensitivity of the microstructured films far surpassed that exhibited by unstructured elastomeric films of similar thickness, and is tunable by using different microstructures. The microstructured films were integrated into organic field-effect transistors as the dielectric layer, forming a new type of active sensor device with similarly excellent sensitivity and response times.
Flexible organic electronics could eventually be used to create electronic skin. Films of a pressure-sensitive microstructured elastomer are now used as the dielectric layer in organic field-effect transistors to create highly sensitive devices. The elastomer is also used in a matrix pressure sensor that can detect loads in numerous positions.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat2834</identifier><identifier>PMID: 20835231</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005/1009 ; 639/301/119/544 ; 639/301/119/995 ; Arrays ; Artificial intelligence ; BIO ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Devices ; Dielectrics ; Elastomers ; Electronics ; Flexibility ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Pressure sensors ; Prostheses ; Prosthetics ; Response time ; Skin ; Thin films</subject><ispartof>Nature materials, 2010-10, Vol.9 (10), p.859-864</ispartof><rights>Springer Nature Limited 2010</rights><rights>Copyright Nature Publishing Group Oct 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-15f650315a384f91a6fd5273be810a801560f1048f38bc7c78d0d99ede8d8813</citedby><cites>FETCH-LOGICAL-c402t-15f650315a384f91a6fd5273be810a801560f1048f38bc7c78d0d99ede8d8813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat2834$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat2834$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20835231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1087976$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mannsfeld, Stefan C. B.</creatorcontrib><creatorcontrib>Tee, Benjamin C-K.</creatorcontrib><creatorcontrib>Stoltenberg, Randall M.</creatorcontrib><creatorcontrib>Chen, Christopher V. H-H.</creatorcontrib><creatorcontrib>Barman, Soumendra</creatorcontrib><creatorcontrib>Muir, Beinn V. O.</creatorcontrib><creatorcontrib>Sokolov, Anatoliy N.</creatorcontrib><creatorcontrib>Reese, Colin</creatorcontrib><creatorcontrib>Bao, Zhenan</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><title>Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>The development of an electronic skin is critical to the realization of artificial intelligence that comes into direct contact with humans, and to biomedical applications such as prosthetic skin. To mimic the tactile sensing properties of natural skin, large arrays of pixel pressure sensors on a flexible and stretchable substrate are required. We demonstrate flexible, capacitive pressure sensors with unprecedented sensitivity and very short response times that can be inexpensively fabricated over large areas by microstructuring of thin films of the biocompatible elastomer polydimethylsiloxane. The pressure sensitivity of the microstructured films far surpassed that exhibited by unstructured elastomeric films of similar thickness, and is tunable by using different microstructures. The microstructured films were integrated into organic field-effect transistors as the dielectric layer, forming a new type of active sensor device with similarly excellent sensitivity and response times.
Flexible organic electronics could eventually be used to create electronic skin. Films of a pressure-sensitive microstructured elastomer are now used as the dielectric layer in organic field-effect transistors to create highly sensitive devices. The elastomer is also used in a matrix pressure sensor that can detect loads in numerous positions.</description><subject>639/301/1005/1009</subject><subject>639/301/119/544</subject><subject>639/301/119/995</subject><subject>Arrays</subject><subject>Artificial intelligence</subject><subject>BIO</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Devices</subject><subject>Dielectrics</subject><subject>Elastomers</subject><subject>Electronics</subject><subject>Flexibility</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Pressure sensors</subject><subject>Prostheses</subject><subject>Prosthetics</subject><subject>Response time</subject><subject>Skin</subject><subject>Thin films</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkU9P3DAQxS0EKhQq8QmqiEvbw4LHju3JEaG2W2klLhy4RYkz2TXKn63tAPvta9iFPfTAyZbeT2_ezGPsHPglcIlXQ19FgTI_YCeQGz3LteaHuz-AEMfscwgPnAtQSn9ix4KjVELCCbufu-Wq22SBhuCie6Ss7ejZ1R1la08hTJ5etdGH7MnFVdY768cQ_WRj0prMT3VNPmscdWSjdzbrqg35cMaO2qoL9GX3nrK7Xz_vbuazxe3vPzfXi5nNuYgzUK1WXIKqJOZtAZVuGyWMrAmBV8hBad4Cz7GVWFtjDTa8KQpqCBtEkKfsYmubMrkyWBfJruw4DClMCRxNYXSCvm2htR__ThRi2btgqeuqgcYplAiIUkuNH5JGKTCmEHw_-J18GCc_pFUTlEO6bqES9H0LvdwseGrLtXd95TcpWvnSXPnWXEK_7vymuqfmHXyrKgE_tkBI0rAkvx_4n9k_o6Khjg</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Mannsfeld, Stefan C. B.</creator><creator>Tee, Benjamin C-K.</creator><creator>Stoltenberg, Randall M.</creator><creator>Chen, Christopher V. H-H.</creator><creator>Barman, Soumendra</creator><creator>Muir, Beinn V. O.</creator><creator>Sokolov, Anatoliy N.</creator><creator>Reese, Colin</creator><creator>Bao, Zhenan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20101001</creationdate><title>Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers</title><author>Mannsfeld, Stefan C. B. ; Tee, Benjamin C-K. ; Stoltenberg, Randall M. ; Chen, Christopher V. H-H. ; Barman, Soumendra ; Muir, Beinn V. O. ; Sokolov, Anatoliy N. ; Reese, Colin ; Bao, Zhenan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-15f650315a384f91a6fd5273be810a801560f1048f38bc7c78d0d99ede8d8813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>639/301/1005/1009</topic><topic>639/301/119/544</topic><topic>639/301/119/995</topic><topic>Arrays</topic><topic>Artificial intelligence</topic><topic>BIO</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Devices</topic><topic>Dielectrics</topic><topic>Elastomers</topic><topic>Electronics</topic><topic>Flexibility</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Pressure sensors</topic><topic>Prostheses</topic><topic>Prosthetics</topic><topic>Response time</topic><topic>Skin</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mannsfeld, Stefan C. B.</creatorcontrib><creatorcontrib>Tee, Benjamin C-K.</creatorcontrib><creatorcontrib>Stoltenberg, Randall M.</creatorcontrib><creatorcontrib>Chen, Christopher V. H-H.</creatorcontrib><creatorcontrib>Barman, Soumendra</creatorcontrib><creatorcontrib>Muir, Beinn V. O.</creatorcontrib><creatorcontrib>Sokolov, Anatoliy N.</creatorcontrib><creatorcontrib>Reese, Colin</creatorcontrib><creatorcontrib>Bao, Zhenan</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mannsfeld, Stefan C. B.</au><au>Tee, Benjamin C-K.</au><au>Stoltenberg, Randall M.</au><au>Chen, Christopher V. H-H.</au><au>Barman, Soumendra</au><au>Muir, Beinn V. O.</au><au>Sokolov, Anatoliy N.</au><au>Reese, Colin</au><au>Bao, Zhenan</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>9</volume><issue>10</issue><spage>859</spage><epage>864</epage><pages>859-864</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>The development of an electronic skin is critical to the realization of artificial intelligence that comes into direct contact with humans, and to biomedical applications such as prosthetic skin. To mimic the tactile sensing properties of natural skin, large arrays of pixel pressure sensors on a flexible and stretchable substrate are required. We demonstrate flexible, capacitive pressure sensors with unprecedented sensitivity and very short response times that can be inexpensively fabricated over large areas by microstructuring of thin films of the biocompatible elastomer polydimethylsiloxane. The pressure sensitivity of the microstructured films far surpassed that exhibited by unstructured elastomeric films of similar thickness, and is tunable by using different microstructures. The microstructured films were integrated into organic field-effect transistors as the dielectric layer, forming a new type of active sensor device with similarly excellent sensitivity and response times.
Flexible organic electronics could eventually be used to create electronic skin. Films of a pressure-sensitive microstructured elastomer are now used as the dielectric layer in organic field-effect transistors to create highly sensitive devices. The elastomer is also used in a matrix pressure sensor that can detect loads in numerous positions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>20835231</pmid><doi>10.1038/nmat2834</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2010-10, Vol.9 (10), p.859-864 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_osti_scitechconnect_1087976 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 639/301/1005/1009 639/301/119/544 639/301/119/995 Arrays Artificial intelligence BIO Biomaterials Chemistry and Materials Science Condensed Matter Physics Devices Dielectrics Elastomers Electronics Flexibility Materials Science Nanotechnology Optical and Electronic Materials Pressure sensors Prostheses Prosthetics Response time Skin Thin films |
title | Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A39%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20sensitive%20flexible%20pressure%20sensors%20with%20microstructured%20rubber%20dielectric%20layers&rft.jtitle=Nature%20materials&rft.au=Mannsfeld,%20Stefan%20C.%20B.&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2010-10-01&rft.volume=9&rft.issue=10&rft.spage=859&rft.epage=864&rft.pages=859-864&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat2834&rft_dat=%3Cproquest_osti_%3E818836368%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=754152395&rft_id=info:pmid/20835231&rfr_iscdi=true |