Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers

The development of an electronic skin is critical to the realization of artificial intelligence that comes into direct contact with humans, and to biomedical applications such as prosthetic skin. To mimic the tactile sensing properties of natural skin, large arrays of pixel pressure sensors on a fle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2010-10, Vol.9 (10), p.859-864
Hauptverfasser: Mannsfeld, Stefan C. B., Tee, Benjamin C-K., Stoltenberg, Randall M., Chen, Christopher V. H-H., Barman, Soumendra, Muir, Beinn V. O., Sokolov, Anatoliy N., Reese, Colin, Bao, Zhenan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 864
container_issue 10
container_start_page 859
container_title Nature materials
container_volume 9
creator Mannsfeld, Stefan C. B.
Tee, Benjamin C-K.
Stoltenberg, Randall M.
Chen, Christopher V. H-H.
Barman, Soumendra
Muir, Beinn V. O.
Sokolov, Anatoliy N.
Reese, Colin
Bao, Zhenan
description The development of an electronic skin is critical to the realization of artificial intelligence that comes into direct contact with humans, and to biomedical applications such as prosthetic skin. To mimic the tactile sensing properties of natural skin, large arrays of pixel pressure sensors on a flexible and stretchable substrate are required. We demonstrate flexible, capacitive pressure sensors with unprecedented sensitivity and very short response times that can be inexpensively fabricated over large areas by microstructuring of thin films of the biocompatible elastomer polydimethylsiloxane. The pressure sensitivity of the microstructured films far surpassed that exhibited by unstructured elastomeric films of similar thickness, and is tunable by using different microstructures. The microstructured films were integrated into organic field-effect transistors as the dielectric layer, forming a new type of active sensor device with similarly excellent sensitivity and response times. Flexible organic electronics could eventually be used to create electronic skin. Films of a pressure-sensitive microstructured elastomer are now used as the dielectric layer in organic field-effect transistors to create highly sensitive devices. The elastomer is also used in a matrix pressure sensor that can detect loads in numerous positions.
doi_str_mv 10.1038/nmat2834
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1087976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>818836368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-15f650315a384f91a6fd5273be810a801560f1048f38bc7c78d0d99ede8d8813</originalsourceid><addsrcrecordid>eNqFkU9P3DAQxS0EKhQq8QmqiEvbw4LHju3JEaG2W2klLhy4RYkz2TXKn63tAPvta9iFPfTAyZbeT2_ezGPsHPglcIlXQ19FgTI_YCeQGz3LteaHuz-AEMfscwgPnAtQSn9ix4KjVELCCbufu-Wq22SBhuCie6Ss7ejZ1R1la08hTJ5etdGH7MnFVdY768cQ_WRj0prMT3VNPmscdWSjdzbrqg35cMaO2qoL9GX3nrK7Xz_vbuazxe3vPzfXi5nNuYgzUK1WXIKqJOZtAZVuGyWMrAmBV8hBad4Cz7GVWFtjDTa8KQpqCBtEkKfsYmubMrkyWBfJruw4DClMCRxNYXSCvm2htR__ThRi2btgqeuqgcYplAiIUkuNH5JGKTCmEHw_-J18GCc_pFUTlEO6bqES9H0LvdwseGrLtXd95TcpWvnSXPnWXEK_7vymuqfmHXyrKgE_tkBI0rAkvx_4n9k_o6Khjg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>754152395</pqid></control><display><type>article</type><title>Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Mannsfeld, Stefan C. B. ; Tee, Benjamin C-K. ; Stoltenberg, Randall M. ; Chen, Christopher V. H-H. ; Barman, Soumendra ; Muir, Beinn V. O. ; Sokolov, Anatoliy N. ; Reese, Colin ; Bao, Zhenan</creator><creatorcontrib>Mannsfeld, Stefan C. B. ; Tee, Benjamin C-K. ; Stoltenberg, Randall M. ; Chen, Christopher V. H-H. ; Barman, Soumendra ; Muir, Beinn V. O. ; Sokolov, Anatoliy N. ; Reese, Colin ; Bao, Zhenan ; SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><description>The development of an electronic skin is critical to the realization of artificial intelligence that comes into direct contact with humans, and to biomedical applications such as prosthetic skin. To mimic the tactile sensing properties of natural skin, large arrays of pixel pressure sensors on a flexible and stretchable substrate are required. We demonstrate flexible, capacitive pressure sensors with unprecedented sensitivity and very short response times that can be inexpensively fabricated over large areas by microstructuring of thin films of the biocompatible elastomer polydimethylsiloxane. The pressure sensitivity of the microstructured films far surpassed that exhibited by unstructured elastomeric films of similar thickness, and is tunable by using different microstructures. The microstructured films were integrated into organic field-effect transistors as the dielectric layer, forming a new type of active sensor device with similarly excellent sensitivity and response times. Flexible organic electronics could eventually be used to create electronic skin. Films of a pressure-sensitive microstructured elastomer are now used as the dielectric layer in organic field-effect transistors to create highly sensitive devices. The elastomer is also used in a matrix pressure sensor that can detect loads in numerous positions.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat2834</identifier><identifier>PMID: 20835231</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005/1009 ; 639/301/119/544 ; 639/301/119/995 ; Arrays ; Artificial intelligence ; BIO ; Biomaterials ; Chemistry and Materials Science ; Condensed Matter Physics ; Devices ; Dielectrics ; Elastomers ; Electronics ; Flexibility ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Pressure sensors ; Prostheses ; Prosthetics ; Response time ; Skin ; Thin films</subject><ispartof>Nature materials, 2010-10, Vol.9 (10), p.859-864</ispartof><rights>Springer Nature Limited 2010</rights><rights>Copyright Nature Publishing Group Oct 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-15f650315a384f91a6fd5273be810a801560f1048f38bc7c78d0d99ede8d8813</citedby><cites>FETCH-LOGICAL-c402t-15f650315a384f91a6fd5273be810a801560f1048f38bc7c78d0d99ede8d8813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat2834$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat2834$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20835231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1087976$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mannsfeld, Stefan C. B.</creatorcontrib><creatorcontrib>Tee, Benjamin C-K.</creatorcontrib><creatorcontrib>Stoltenberg, Randall M.</creatorcontrib><creatorcontrib>Chen, Christopher V. H-H.</creatorcontrib><creatorcontrib>Barman, Soumendra</creatorcontrib><creatorcontrib>Muir, Beinn V. O.</creatorcontrib><creatorcontrib>Sokolov, Anatoliy N.</creatorcontrib><creatorcontrib>Reese, Colin</creatorcontrib><creatorcontrib>Bao, Zhenan</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><title>Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>The development of an electronic skin is critical to the realization of artificial intelligence that comes into direct contact with humans, and to biomedical applications such as prosthetic skin. To mimic the tactile sensing properties of natural skin, large arrays of pixel pressure sensors on a flexible and stretchable substrate are required. We demonstrate flexible, capacitive pressure sensors with unprecedented sensitivity and very short response times that can be inexpensively fabricated over large areas by microstructuring of thin films of the biocompatible elastomer polydimethylsiloxane. The pressure sensitivity of the microstructured films far surpassed that exhibited by unstructured elastomeric films of similar thickness, and is tunable by using different microstructures. The microstructured films were integrated into organic field-effect transistors as the dielectric layer, forming a new type of active sensor device with similarly excellent sensitivity and response times. Flexible organic electronics could eventually be used to create electronic skin. Films of a pressure-sensitive microstructured elastomer are now used as the dielectric layer in organic field-effect transistors to create highly sensitive devices. The elastomer is also used in a matrix pressure sensor that can detect loads in numerous positions.</description><subject>639/301/1005/1009</subject><subject>639/301/119/544</subject><subject>639/301/119/995</subject><subject>Arrays</subject><subject>Artificial intelligence</subject><subject>BIO</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Devices</subject><subject>Dielectrics</subject><subject>Elastomers</subject><subject>Electronics</subject><subject>Flexibility</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Pressure sensors</subject><subject>Prostheses</subject><subject>Prosthetics</subject><subject>Response time</subject><subject>Skin</subject><subject>Thin films</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkU9P3DAQxS0EKhQq8QmqiEvbw4LHju3JEaG2W2klLhy4RYkz2TXKn63tAPvta9iFPfTAyZbeT2_ezGPsHPglcIlXQ19FgTI_YCeQGz3LteaHuz-AEMfscwgPnAtQSn9ix4KjVELCCbufu-Wq22SBhuCie6Ss7ejZ1R1la08hTJ5etdGH7MnFVdY768cQ_WRj0prMT3VNPmscdWSjdzbrqg35cMaO2qoL9GX3nrK7Xz_vbuazxe3vPzfXi5nNuYgzUK1WXIKqJOZtAZVuGyWMrAmBV8hBad4Cz7GVWFtjDTa8KQpqCBtEkKfsYmubMrkyWBfJruw4DClMCRxNYXSCvm2htR__ThRi2btgqeuqgcYplAiIUkuNH5JGKTCmEHw_-J18GCc_pFUTlEO6bqES9H0LvdwseGrLtXd95TcpWvnSXPnWXEK_7vymuqfmHXyrKgE_tkBI0rAkvx_4n9k_o6Khjg</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Mannsfeld, Stefan C. B.</creator><creator>Tee, Benjamin C-K.</creator><creator>Stoltenberg, Randall M.</creator><creator>Chen, Christopher V. H-H.</creator><creator>Barman, Soumendra</creator><creator>Muir, Beinn V. O.</creator><creator>Sokolov, Anatoliy N.</creator><creator>Reese, Colin</creator><creator>Bao, Zhenan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20101001</creationdate><title>Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers</title><author>Mannsfeld, Stefan C. B. ; Tee, Benjamin C-K. ; Stoltenberg, Randall M. ; Chen, Christopher V. H-H. ; Barman, Soumendra ; Muir, Beinn V. O. ; Sokolov, Anatoliy N. ; Reese, Colin ; Bao, Zhenan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-15f650315a384f91a6fd5273be810a801560f1048f38bc7c78d0d99ede8d8813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>639/301/1005/1009</topic><topic>639/301/119/544</topic><topic>639/301/119/995</topic><topic>Arrays</topic><topic>Artificial intelligence</topic><topic>BIO</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Devices</topic><topic>Dielectrics</topic><topic>Elastomers</topic><topic>Electronics</topic><topic>Flexibility</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Pressure sensors</topic><topic>Prostheses</topic><topic>Prosthetics</topic><topic>Response time</topic><topic>Skin</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mannsfeld, Stefan C. B.</creatorcontrib><creatorcontrib>Tee, Benjamin C-K.</creatorcontrib><creatorcontrib>Stoltenberg, Randall M.</creatorcontrib><creatorcontrib>Chen, Christopher V. H-H.</creatorcontrib><creatorcontrib>Barman, Soumendra</creatorcontrib><creatorcontrib>Muir, Beinn V. O.</creatorcontrib><creatorcontrib>Sokolov, Anatoliy N.</creatorcontrib><creatorcontrib>Reese, Colin</creatorcontrib><creatorcontrib>Bao, Zhenan</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mannsfeld, Stefan C. B.</au><au>Tee, Benjamin C-K.</au><au>Stoltenberg, Randall M.</au><au>Chen, Christopher V. H-H.</au><au>Barman, Soumendra</au><au>Muir, Beinn V. O.</au><au>Sokolov, Anatoliy N.</au><au>Reese, Colin</au><au>Bao, Zhenan</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2010-10-01</date><risdate>2010</risdate><volume>9</volume><issue>10</issue><spage>859</spage><epage>864</epage><pages>859-864</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>The development of an electronic skin is critical to the realization of artificial intelligence that comes into direct contact with humans, and to biomedical applications such as prosthetic skin. To mimic the tactile sensing properties of natural skin, large arrays of pixel pressure sensors on a flexible and stretchable substrate are required. We demonstrate flexible, capacitive pressure sensors with unprecedented sensitivity and very short response times that can be inexpensively fabricated over large areas by microstructuring of thin films of the biocompatible elastomer polydimethylsiloxane. The pressure sensitivity of the microstructured films far surpassed that exhibited by unstructured elastomeric films of similar thickness, and is tunable by using different microstructures. The microstructured films were integrated into organic field-effect transistors as the dielectric layer, forming a new type of active sensor device with similarly excellent sensitivity and response times. Flexible organic electronics could eventually be used to create electronic skin. Films of a pressure-sensitive microstructured elastomer are now used as the dielectric layer in organic field-effect transistors to create highly sensitive devices. The elastomer is also used in a matrix pressure sensor that can detect loads in numerous positions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>20835231</pmid><doi>10.1038/nmat2834</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2010-10, Vol.9 (10), p.859-864
issn 1476-1122
1476-4660
language eng
recordid cdi_osti_scitechconnect_1087976
source SpringerLink Journals; Nature Journals Online
subjects 639/301/1005/1009
639/301/119/544
639/301/119/995
Arrays
Artificial intelligence
BIO
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
Devices
Dielectrics
Elastomers
Electronics
Flexibility
Materials Science
Nanotechnology
Optical and Electronic Materials
Pressure sensors
Prostheses
Prosthetics
Response time
Skin
Thin films
title Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A39%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20sensitive%20flexible%20pressure%20sensors%20with%20microstructured%20rubber%20dielectric%20layers&rft.jtitle=Nature%20materials&rft.au=Mannsfeld,%20Stefan%20C.%20B.&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2010-10-01&rft.volume=9&rft.issue=10&rft.spage=859&rft.epage=864&rft.pages=859-864&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat2834&rft_dat=%3Cproquest_osti_%3E818836368%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=754152395&rft_id=info:pmid/20835231&rfr_iscdi=true