Analysis of composite electrolytes with sintered reinforcement structure for energy storage applications
Effective conductivity and mechanical properties of composite polymer electrolytes, in which the reinforcement phase is a sintered packed bed of Li-ion conductive ceramics particles, were estimated using finite element analyses. The computations targeted estimation of the effect of sintering degree,...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2013-11, Vol.241, p.178-185 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 185 |
---|---|
container_issue | |
container_start_page | 178 |
container_title | Journal of power sources |
container_volume | 241 |
creator | Kalnaus, Sergiy Tenhaeff, Wyatt E. Sakamoto, Jeffrey Sabau, Adrian S. Daniel, Claus Dudney, Nancy J. |
description | Effective conductivity and mechanical properties of composite polymer electrolytes, in which the reinforcement phase is a sintered packed bed of Li-ion conductive ceramics particles, were estimated using finite element analyses. The computations targeted estimation of the effect of sintering degree, i.e. size of the inter-particle connective necks, on the overall properties of the composite. Methods for microstructure generation and computational procedures were presented. The mechanical ability of the membrane to block lithium dendrites was assessed based on a stability criterion, which depends on the computed effective stiffness. It was found that the minimum size of the inter-particle connections necessary to provide mechanical stability without losing the enhancement in conductivity was 0.05 times the mean particle radius.
•We study effective conductivity and mechanical properties of composite electrolytes.•A novel structure with sintered ceramics reinforcement is considered to block Li dendrites.•Finite element analyses are performed to compute the properties.•Minimum size of sintering necks necessary to provide desired properties is determined. |
doi_str_mv | 10.1016/j.jpowsour.2013.04.096 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1082042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775313007040</els_id><sourcerecordid>1448753156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-aeb40b0256d656cac4e0079e2634a5e27ccbed98d87e9da508baae2c1ecb85543</originalsourceid><addsrcrecordid>eNqFkUGLFDEQhRtRcFz9CxIEwUu3STrpdN9cFnWFBS96Dunq6p0MPUmbSrvMvzfDrHvdU0HxVT3ee1X1XvBGcNF9PjSHNT5Q3FIjuWgbrho-dC-qnehNW0uj9ctqx1vT18bo9nX1hujAORfC8F21vw5uOZEnFmcG8bhG8hkZLgg5xeWUkdiDz3tGPmRMOLGEPswxAR4xZEY5bZC3hKzsGAZM96eyjMndI3Prunhw2cdAb6tXs1sI3z3Oq-r3t6-_bm7ru5_ff9xc39WgjMy1w1HxkUvdTZ3uwIFCzs2AsmuV0ygNwIjT0E-9wWFymvejcyhBIIy91qq9qj5c_kbK3hIUN7CHGEIxZAXvJVeyQJ8u0Jrinw0p26MnwGVxAeNGVmjRKqMHw59HlepLrEJ3Be0uKKRIlHC2a_JHl05F156rsgf7vyp7rspyZUtV5fDjo4YjcMucXABPT9fSdK0ZpCnclwuHJcC_HtPZHwbAyaezvSn656T-ASrIsMI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448753156</pqid></control><display><type>article</type><title>Analysis of composite electrolytes with sintered reinforcement structure for energy storage applications</title><source>Elsevier ScienceDirect Journals</source><creator>Kalnaus, Sergiy ; Tenhaeff, Wyatt E. ; Sakamoto, Jeffrey ; Sabau, Adrian S. ; Daniel, Claus ; Dudney, Nancy J.</creator><creatorcontrib>Kalnaus, Sergiy ; Tenhaeff, Wyatt E. ; Sakamoto, Jeffrey ; Sabau, Adrian S. ; Daniel, Claus ; Dudney, Nancy J. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Effective conductivity and mechanical properties of composite polymer electrolytes, in which the reinforcement phase is a sintered packed bed of Li-ion conductive ceramics particles, were estimated using finite element analyses. The computations targeted estimation of the effect of sintering degree, i.e. size of the inter-particle connective necks, on the overall properties of the composite. Methods for microstructure generation and computational procedures were presented. The mechanical ability of the membrane to block lithium dendrites was assessed based on a stability criterion, which depends on the computed effective stiffness. It was found that the minimum size of the inter-particle connections necessary to provide mechanical stability without losing the enhancement in conductivity was 0.05 times the mean particle radius.
•We study effective conductivity and mechanical properties of composite electrolytes.•A novel structure with sintered ceramics reinforcement is considered to block Li dendrites.•Finite element analyses are performed to compute the properties.•Minimum size of sintering necks necessary to provide desired properties is determined.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2013.04.096</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Composite electrolyte ; Computation ; Dendrites ; Dendritic structure ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrolytes ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Lithium ; Lithium anode ; Lithium ion battery ; Materials ; Particulate composites ; Reinforcement ; Sintering ; Stability ; Transport and storage of energy</subject><ispartof>Journal of power sources, 2013-11, Vol.241, p.178-185</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-aeb40b0256d656cac4e0079e2634a5e27ccbed98d87e9da508baae2c1ecb85543</citedby><cites>FETCH-LOGICAL-c472t-aeb40b0256d656cac4e0079e2634a5e27ccbed98d87e9da508baae2c1ecb85543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775313007040$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27637927$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1082042$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kalnaus, Sergiy</creatorcontrib><creatorcontrib>Tenhaeff, Wyatt E.</creatorcontrib><creatorcontrib>Sakamoto, Jeffrey</creatorcontrib><creatorcontrib>Sabau, Adrian S.</creatorcontrib><creatorcontrib>Daniel, Claus</creatorcontrib><creatorcontrib>Dudney, Nancy J.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Analysis of composite electrolytes with sintered reinforcement structure for energy storage applications</title><title>Journal of power sources</title><description>Effective conductivity and mechanical properties of composite polymer electrolytes, in which the reinforcement phase is a sintered packed bed of Li-ion conductive ceramics particles, were estimated using finite element analyses. The computations targeted estimation of the effect of sintering degree, i.e. size of the inter-particle connective necks, on the overall properties of the composite. Methods for microstructure generation and computational procedures were presented. The mechanical ability of the membrane to block lithium dendrites was assessed based on a stability criterion, which depends on the computed effective stiffness. It was found that the minimum size of the inter-particle connections necessary to provide mechanical stability without losing the enhancement in conductivity was 0.05 times the mean particle radius.
•We study effective conductivity and mechanical properties of composite electrolytes.•A novel structure with sintered ceramics reinforcement is considered to block Li dendrites.•Finite element analyses are performed to compute the properties.•Minimum size of sintering necks necessary to provide desired properties is determined.</description><subject>Applied sciences</subject><subject>Composite electrolyte</subject><subject>Computation</subject><subject>Dendrites</subject><subject>Dendritic structure</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrolytes</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Lithium</subject><subject>Lithium anode</subject><subject>Lithium ion battery</subject><subject>Materials</subject><subject>Particulate composites</subject><subject>Reinforcement</subject><subject>Sintering</subject><subject>Stability</subject><subject>Transport and storage of energy</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUGLFDEQhRtRcFz9CxIEwUu3STrpdN9cFnWFBS96Dunq6p0MPUmbSrvMvzfDrHvdU0HxVT3ee1X1XvBGcNF9PjSHNT5Q3FIjuWgbrho-dC-qnehNW0uj9ctqx1vT18bo9nX1hujAORfC8F21vw5uOZEnFmcG8bhG8hkZLgg5xeWUkdiDz3tGPmRMOLGEPswxAR4xZEY5bZC3hKzsGAZM96eyjMndI3Prunhw2cdAb6tXs1sI3z3Oq-r3t6-_bm7ru5_ff9xc39WgjMy1w1HxkUvdTZ3uwIFCzs2AsmuV0ygNwIjT0E-9wWFymvejcyhBIIy91qq9qj5c_kbK3hIUN7CHGEIxZAXvJVeyQJ8u0Jrinw0p26MnwGVxAeNGVmjRKqMHw59HlepLrEJ3Be0uKKRIlHC2a_JHl05F156rsgf7vyp7rspyZUtV5fDjo4YjcMucXABPT9fSdK0ZpCnclwuHJcC_HtPZHwbAyaezvSn656T-ASrIsMI</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Kalnaus, Sergiy</creator><creator>Tenhaeff, Wyatt E.</creator><creator>Sakamoto, Jeffrey</creator><creator>Sabau, Adrian S.</creator><creator>Daniel, Claus</creator><creator>Dudney, Nancy J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20131101</creationdate><title>Analysis of composite electrolytes with sintered reinforcement structure for energy storage applications</title><author>Kalnaus, Sergiy ; Tenhaeff, Wyatt E. ; Sakamoto, Jeffrey ; Sabau, Adrian S. ; Daniel, Claus ; Dudney, Nancy J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-aeb40b0256d656cac4e0079e2634a5e27ccbed98d87e9da508baae2c1ecb85543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Composite electrolyte</topic><topic>Computation</topic><topic>Dendrites</topic><topic>Dendritic structure</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrolytes</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Lithium</topic><topic>Lithium anode</topic><topic>Lithium ion battery</topic><topic>Materials</topic><topic>Particulate composites</topic><topic>Reinforcement</topic><topic>Sintering</topic><topic>Stability</topic><topic>Transport and storage of energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalnaus, Sergiy</creatorcontrib><creatorcontrib>Tenhaeff, Wyatt E.</creatorcontrib><creatorcontrib>Sakamoto, Jeffrey</creatorcontrib><creatorcontrib>Sabau, Adrian S.</creatorcontrib><creatorcontrib>Daniel, Claus</creatorcontrib><creatorcontrib>Dudney, Nancy J.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalnaus, Sergiy</au><au>Tenhaeff, Wyatt E.</au><au>Sakamoto, Jeffrey</au><au>Sabau, Adrian S.</au><au>Daniel, Claus</au><au>Dudney, Nancy J.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of composite electrolytes with sintered reinforcement structure for energy storage applications</atitle><jtitle>Journal of power sources</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>241</volume><spage>178</spage><epage>185</epage><pages>178-185</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Effective conductivity and mechanical properties of composite polymer electrolytes, in which the reinforcement phase is a sintered packed bed of Li-ion conductive ceramics particles, were estimated using finite element analyses. The computations targeted estimation of the effect of sintering degree, i.e. size of the inter-particle connective necks, on the overall properties of the composite. Methods for microstructure generation and computational procedures were presented. The mechanical ability of the membrane to block lithium dendrites was assessed based on a stability criterion, which depends on the computed effective stiffness. It was found that the minimum size of the inter-particle connections necessary to provide mechanical stability without losing the enhancement in conductivity was 0.05 times the mean particle radius.
•We study effective conductivity and mechanical properties of composite electrolytes.•A novel structure with sintered ceramics reinforcement is considered to block Li dendrites.•Finite element analyses are performed to compute the properties.•Minimum size of sintering necks necessary to provide desired properties is determined.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2013.04.096</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2013-11, Vol.241, p.178-185 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_osti_scitechconnect_1082042 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Composite electrolyte Computation Dendrites Dendritic structure Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Electrolytes Energy Energy. Thermal use of fuels Exact sciences and technology Lithium Lithium anode Lithium ion battery Materials Particulate composites Reinforcement Sintering Stability Transport and storage of energy |
title | Analysis of composite electrolytes with sintered reinforcement structure for energy storage applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A19%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20composite%20electrolytes%20with%20sintered%20reinforcement%20structure%20for%20energy%20storage%20applications&rft.jtitle=Journal%20of%20power%20sources&rft.au=Kalnaus,%20Sergiy&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2013-11-01&rft.volume=241&rft.spage=178&rft.epage=185&rft.pages=178-185&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2013.04.096&rft_dat=%3Cproquest_osti_%3E1448753156%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448753156&rft_id=info:pmid/&rft_els_id=S0378775313007040&rfr_iscdi=true |