Analysis of composite electrolytes with sintered reinforcement structure for energy storage applications

Effective conductivity and mechanical properties of composite polymer electrolytes, in which the reinforcement phase is a sintered packed bed of Li-ion conductive ceramics particles, were estimated using finite element analyses. The computations targeted estimation of the effect of sintering degree,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2013-11, Vol.241, p.178-185
Hauptverfasser: Kalnaus, Sergiy, Tenhaeff, Wyatt E., Sakamoto, Jeffrey, Sabau, Adrian S., Daniel, Claus, Dudney, Nancy J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 185
container_issue
container_start_page 178
container_title Journal of power sources
container_volume 241
creator Kalnaus, Sergiy
Tenhaeff, Wyatt E.
Sakamoto, Jeffrey
Sabau, Adrian S.
Daniel, Claus
Dudney, Nancy J.
description Effective conductivity and mechanical properties of composite polymer electrolytes, in which the reinforcement phase is a sintered packed bed of Li-ion conductive ceramics particles, were estimated using finite element analyses. The computations targeted estimation of the effect of sintering degree, i.e. size of the inter-particle connective necks, on the overall properties of the composite. Methods for microstructure generation and computational procedures were presented. The mechanical ability of the membrane to block lithium dendrites was assessed based on a stability criterion, which depends on the computed effective stiffness. It was found that the minimum size of the inter-particle connections necessary to provide mechanical stability without losing the enhancement in conductivity was 0.05 times the mean particle radius. •We study effective conductivity and mechanical properties of composite electrolytes.•A novel structure with sintered ceramics reinforcement is considered to block Li dendrites.•Finite element analyses are performed to compute the properties.•Minimum size of sintering necks necessary to provide desired properties is determined.
doi_str_mv 10.1016/j.jpowsour.2013.04.096
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1082042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775313007040</els_id><sourcerecordid>1448753156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-aeb40b0256d656cac4e0079e2634a5e27ccbed98d87e9da508baae2c1ecb85543</originalsourceid><addsrcrecordid>eNqFkUGLFDEQhRtRcFz9CxIEwUu3STrpdN9cFnWFBS96Dunq6p0MPUmbSrvMvzfDrHvdU0HxVT3ee1X1XvBGcNF9PjSHNT5Q3FIjuWgbrho-dC-qnehNW0uj9ctqx1vT18bo9nX1hujAORfC8F21vw5uOZEnFmcG8bhG8hkZLgg5xeWUkdiDz3tGPmRMOLGEPswxAR4xZEY5bZC3hKzsGAZM96eyjMndI3Prunhw2cdAb6tXs1sI3z3Oq-r3t6-_bm7ru5_ff9xc39WgjMy1w1HxkUvdTZ3uwIFCzs2AsmuV0ygNwIjT0E-9wWFymvejcyhBIIy91qq9qj5c_kbK3hIUN7CHGEIxZAXvJVeyQJ8u0Jrinw0p26MnwGVxAeNGVmjRKqMHw59HlepLrEJ3Be0uKKRIlHC2a_JHl05F156rsgf7vyp7rspyZUtV5fDjo4YjcMucXABPT9fSdK0ZpCnclwuHJcC_HtPZHwbAyaezvSn656T-ASrIsMI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448753156</pqid></control><display><type>article</type><title>Analysis of composite electrolytes with sintered reinforcement structure for energy storage applications</title><source>Elsevier ScienceDirect Journals</source><creator>Kalnaus, Sergiy ; Tenhaeff, Wyatt E. ; Sakamoto, Jeffrey ; Sabau, Adrian S. ; Daniel, Claus ; Dudney, Nancy J.</creator><creatorcontrib>Kalnaus, Sergiy ; Tenhaeff, Wyatt E. ; Sakamoto, Jeffrey ; Sabau, Adrian S. ; Daniel, Claus ; Dudney, Nancy J. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Effective conductivity and mechanical properties of composite polymer electrolytes, in which the reinforcement phase is a sintered packed bed of Li-ion conductive ceramics particles, were estimated using finite element analyses. The computations targeted estimation of the effect of sintering degree, i.e. size of the inter-particle connective necks, on the overall properties of the composite. Methods for microstructure generation and computational procedures were presented. The mechanical ability of the membrane to block lithium dendrites was assessed based on a stability criterion, which depends on the computed effective stiffness. It was found that the minimum size of the inter-particle connections necessary to provide mechanical stability without losing the enhancement in conductivity was 0.05 times the mean particle radius. •We study effective conductivity and mechanical properties of composite electrolytes.•A novel structure with sintered ceramics reinforcement is considered to block Li dendrites.•Finite element analyses are performed to compute the properties.•Minimum size of sintering necks necessary to provide desired properties is determined.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2013.04.096</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Composite electrolyte ; Computation ; Dendrites ; Dendritic structure ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrolytes ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Lithium ; Lithium anode ; Lithium ion battery ; Materials ; Particulate composites ; Reinforcement ; Sintering ; Stability ; Transport and storage of energy</subject><ispartof>Journal of power sources, 2013-11, Vol.241, p.178-185</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-aeb40b0256d656cac4e0079e2634a5e27ccbed98d87e9da508baae2c1ecb85543</citedby><cites>FETCH-LOGICAL-c472t-aeb40b0256d656cac4e0079e2634a5e27ccbed98d87e9da508baae2c1ecb85543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775313007040$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27637927$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1082042$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kalnaus, Sergiy</creatorcontrib><creatorcontrib>Tenhaeff, Wyatt E.</creatorcontrib><creatorcontrib>Sakamoto, Jeffrey</creatorcontrib><creatorcontrib>Sabau, Adrian S.</creatorcontrib><creatorcontrib>Daniel, Claus</creatorcontrib><creatorcontrib>Dudney, Nancy J.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Analysis of composite electrolytes with sintered reinforcement structure for energy storage applications</title><title>Journal of power sources</title><description>Effective conductivity and mechanical properties of composite polymer electrolytes, in which the reinforcement phase is a sintered packed bed of Li-ion conductive ceramics particles, were estimated using finite element analyses. The computations targeted estimation of the effect of sintering degree, i.e. size of the inter-particle connective necks, on the overall properties of the composite. Methods for microstructure generation and computational procedures were presented. The mechanical ability of the membrane to block lithium dendrites was assessed based on a stability criterion, which depends on the computed effective stiffness. It was found that the minimum size of the inter-particle connections necessary to provide mechanical stability without losing the enhancement in conductivity was 0.05 times the mean particle radius. •We study effective conductivity and mechanical properties of composite electrolytes.•A novel structure with sintered ceramics reinforcement is considered to block Li dendrites.•Finite element analyses are performed to compute the properties.•Minimum size of sintering necks necessary to provide desired properties is determined.</description><subject>Applied sciences</subject><subject>Composite electrolyte</subject><subject>Computation</subject><subject>Dendrites</subject><subject>Dendritic structure</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrolytes</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Lithium</subject><subject>Lithium anode</subject><subject>Lithium ion battery</subject><subject>Materials</subject><subject>Particulate composites</subject><subject>Reinforcement</subject><subject>Sintering</subject><subject>Stability</subject><subject>Transport and storage of energy</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUGLFDEQhRtRcFz9CxIEwUu3STrpdN9cFnWFBS96Dunq6p0MPUmbSrvMvzfDrHvdU0HxVT3ee1X1XvBGcNF9PjSHNT5Q3FIjuWgbrho-dC-qnehNW0uj9ctqx1vT18bo9nX1hujAORfC8F21vw5uOZEnFmcG8bhG8hkZLgg5xeWUkdiDz3tGPmRMOLGEPswxAR4xZEY5bZC3hKzsGAZM96eyjMndI3Prunhw2cdAb6tXs1sI3z3Oq-r3t6-_bm7ru5_ff9xc39WgjMy1w1HxkUvdTZ3uwIFCzs2AsmuV0ygNwIjT0E-9wWFymvejcyhBIIy91qq9qj5c_kbK3hIUN7CHGEIxZAXvJVeyQJ8u0Jrinw0p26MnwGVxAeNGVmjRKqMHw59HlepLrEJ3Be0uKKRIlHC2a_JHl05F156rsgf7vyp7rspyZUtV5fDjo4YjcMucXABPT9fSdK0ZpCnclwuHJcC_HtPZHwbAyaezvSn656T-ASrIsMI</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Kalnaus, Sergiy</creator><creator>Tenhaeff, Wyatt E.</creator><creator>Sakamoto, Jeffrey</creator><creator>Sabau, Adrian S.</creator><creator>Daniel, Claus</creator><creator>Dudney, Nancy J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20131101</creationdate><title>Analysis of composite electrolytes with sintered reinforcement structure for energy storage applications</title><author>Kalnaus, Sergiy ; Tenhaeff, Wyatt E. ; Sakamoto, Jeffrey ; Sabau, Adrian S. ; Daniel, Claus ; Dudney, Nancy J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-aeb40b0256d656cac4e0079e2634a5e27ccbed98d87e9da508baae2c1ecb85543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Composite electrolyte</topic><topic>Computation</topic><topic>Dendrites</topic><topic>Dendritic structure</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrolytes</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Lithium</topic><topic>Lithium anode</topic><topic>Lithium ion battery</topic><topic>Materials</topic><topic>Particulate composites</topic><topic>Reinforcement</topic><topic>Sintering</topic><topic>Stability</topic><topic>Transport and storage of energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalnaus, Sergiy</creatorcontrib><creatorcontrib>Tenhaeff, Wyatt E.</creatorcontrib><creatorcontrib>Sakamoto, Jeffrey</creatorcontrib><creatorcontrib>Sabau, Adrian S.</creatorcontrib><creatorcontrib>Daniel, Claus</creatorcontrib><creatorcontrib>Dudney, Nancy J.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalnaus, Sergiy</au><au>Tenhaeff, Wyatt E.</au><au>Sakamoto, Jeffrey</au><au>Sabau, Adrian S.</au><au>Daniel, Claus</au><au>Dudney, Nancy J.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of composite electrolytes with sintered reinforcement structure for energy storage applications</atitle><jtitle>Journal of power sources</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>241</volume><spage>178</spage><epage>185</epage><pages>178-185</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Effective conductivity and mechanical properties of composite polymer electrolytes, in which the reinforcement phase is a sintered packed bed of Li-ion conductive ceramics particles, were estimated using finite element analyses. The computations targeted estimation of the effect of sintering degree, i.e. size of the inter-particle connective necks, on the overall properties of the composite. Methods for microstructure generation and computational procedures were presented. The mechanical ability of the membrane to block lithium dendrites was assessed based on a stability criterion, which depends on the computed effective stiffness. It was found that the minimum size of the inter-particle connections necessary to provide mechanical stability without losing the enhancement in conductivity was 0.05 times the mean particle radius. •We study effective conductivity and mechanical properties of composite electrolytes.•A novel structure with sintered ceramics reinforcement is considered to block Li dendrites.•Finite element analyses are performed to compute the properties.•Minimum size of sintering necks necessary to provide desired properties is determined.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2013.04.096</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2013-11, Vol.241, p.178-185
issn 0378-7753
1873-2755
language eng
recordid cdi_osti_scitechconnect_1082042
source Elsevier ScienceDirect Journals
subjects Applied sciences
Composite electrolyte
Computation
Dendrites
Dendritic structure
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrolytes
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Lithium
Lithium anode
Lithium ion battery
Materials
Particulate composites
Reinforcement
Sintering
Stability
Transport and storage of energy
title Analysis of composite electrolytes with sintered reinforcement structure for energy storage applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A19%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20composite%20electrolytes%20with%20sintered%20reinforcement%20structure%20for%20energy%20storage%20applications&rft.jtitle=Journal%20of%20power%20sources&rft.au=Kalnaus,%20Sergiy&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2013-11-01&rft.volume=241&rft.spage=178&rft.epage=185&rft.pages=178-185&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2013.04.096&rft_dat=%3Cproquest_osti_%3E1448753156%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448753156&rft_id=info:pmid/&rft_els_id=S0378775313007040&rfr_iscdi=true