Nanoporous Pd alloys with compositionally tunable hydrogen storage properties prepared by nanoparticle consolidation
Nanoporous palladium and palladium alloys are expected to have improved mass transport rates and cycle life compared to bulk materials for energy storage and other applications due to high ratios of surface area to metal volume. Preparation of such materials with high thermal stability and well-cont...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry 2012-01, Vol.22 (28), p.14013-14022 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14022 |
---|---|
container_issue | 28 |
container_start_page | 14013 |
container_title | Journal of materials chemistry |
container_volume | 22 |
creator | Cappillino, Patrick J. Sugar, Joshua D. Hekmaty, Michelle A. Jacobs, Benjamin W. Stavila, Vitalie Kotula, Paul G. Chames, Jeffrey M. Yang, Nancy Y. Robinson, David B. |
description | Nanoporous palladium and palladium alloys are expected to have improved mass transport rates and cycle life compared to bulk materials for energy storage and other applications due to high ratios of surface area to metal volume. Preparation of such materials with high thermal stability and well-controlled metal composition, however, remains a challenge. This work describes a scalable, bottom-up technique for preparing nanoporous palladium alloys based on partial consolidation of dendrimer-encapsulated nanoparticles (DEN). Destabilization of a colloidal suspension of DEN and purification yields high surface area material (60-80 m super(2) g super(-1)) with a broad pore size distribution centered between 20 and 50 nm. This approach allows for precise tuning of product composition through adjustment of the composition of the precursor DEN. Nanoporous Pd sub(0.9)Rh sub(0.1) alloys with uniform composition or with Rh enrichment at pore walls and grain boundaries have been prepared and these structures have been confirmed with high-spatial resolution, aberration corrected quantitative STEM-EDS. Compared to bulk alloys of the same nominal composition, the nanoporous bimetallics show much faster hydrogen uptake kinetics, and store hydrogen at much lower pressure. Pore structure remains intact to temperatures above 300 degree C, suggesting that these materials will have long lifetimes at the temperatures used for hydrogen storage applications. |
doi_str_mv | 10.1039/c2jm30988b |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1073986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671362429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-ac043f0d8fc2c32f40c691c4a29d7126c66b1cc411f70e61e437ddd8bef0885b3</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMouH5c_AXBkwjVfLRpc5TFLxD1oOeSTqZulm5TkyzSf2-WFTzNMDzzMPMScsHZDWdS34JYbyTTTdMdkAWXqiyqivFDsmC60oUuRXNMTmJcM8Z5raoFSa9m9JMPfhvpu6VmGPwc6Y9LKwp-M_nokvNjHs80bUfTDUhXsw3-C0cakw_mC-kU_IQhOYy5xckEtLSb6bgzmzyHvAR-jH5w1ux0Z-SoN0PE8796Sj4f7j-WT8XL2-Pz8u6lAKF5KgywUvbMNj0IkKIvGSjNoTRC25oLBUp1HKDkvK8ZKo6lrK21TYc9a5qqk6fkcu_1Mbk2gksIq3zJiJBazmqpG5Whqz2U3_jeYkztxkXAYTAj5lRaruocpCiFzuj1HoXgYwzYt1NwGxPmLGt3-bf_-ctfp0Z8IA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671362429</pqid></control><display><type>article</type><title>Nanoporous Pd alloys with compositionally tunable hydrogen storage properties prepared by nanoparticle consolidation</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Cappillino, Patrick J. ; Sugar, Joshua D. ; Hekmaty, Michelle A. ; Jacobs, Benjamin W. ; Stavila, Vitalie ; Kotula, Paul G. ; Chames, Jeffrey M. ; Yang, Nancy Y. ; Robinson, David B.</creator><creatorcontrib>Cappillino, Patrick J. ; Sugar, Joshua D. ; Hekmaty, Michelle A. ; Jacobs, Benjamin W. ; Stavila, Vitalie ; Kotula, Paul G. ; Chames, Jeffrey M. ; Yang, Nancy Y. ; Robinson, David B. ; Sandia National Laboratories</creatorcontrib><description>Nanoporous palladium and palladium alloys are expected to have improved mass transport rates and cycle life compared to bulk materials for energy storage and other applications due to high ratios of surface area to metal volume. Preparation of such materials with high thermal stability and well-controlled metal composition, however, remains a challenge. This work describes a scalable, bottom-up technique for preparing nanoporous palladium alloys based on partial consolidation of dendrimer-encapsulated nanoparticles (DEN). Destabilization of a colloidal suspension of DEN and purification yields high surface area material (60-80 m super(2) g super(-1)) with a broad pore size distribution centered between 20 and 50 nm. This approach allows for precise tuning of product composition through adjustment of the composition of the precursor DEN. Nanoporous Pd sub(0.9)Rh sub(0.1) alloys with uniform composition or with Rh enrichment at pore walls and grain boundaries have been prepared and these structures have been confirmed with high-spatial resolution, aberration corrected quantitative STEM-EDS. Compared to bulk alloys of the same nominal composition, the nanoporous bimetallics show much faster hydrogen uptake kinetics, and store hydrogen at much lower pressure. Pore structure remains intact to temperatures above 300 degree C, suggesting that these materials will have long lifetimes at the temperatures used for hydrogen storage applications.</description><identifier>ISSN: 0959-9428</identifier><identifier>EISSN: 1364-5501</identifier><identifier>DOI: 10.1039/c2jm30988b</identifier><language>eng</language><publisher>United States</publisher><subject>Alloys ; Consolidation ; Hydrogen storage ; Nanocomposites ; Nanomaterials ; Nanostructure ; Palladium base alloys ; Porosity</subject><ispartof>Journal of materials chemistry, 2012-01, Vol.22 (28), p.14013-14022</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-ac043f0d8fc2c32f40c691c4a29d7126c66b1cc411f70e61e437ddd8bef0885b3</citedby><cites>FETCH-LOGICAL-c291t-ac043f0d8fc2c32f40c691c4a29d7126c66b1cc411f70e61e437ddd8bef0885b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1073986$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cappillino, Patrick J.</creatorcontrib><creatorcontrib>Sugar, Joshua D.</creatorcontrib><creatorcontrib>Hekmaty, Michelle A.</creatorcontrib><creatorcontrib>Jacobs, Benjamin W.</creatorcontrib><creatorcontrib>Stavila, Vitalie</creatorcontrib><creatorcontrib>Kotula, Paul G.</creatorcontrib><creatorcontrib>Chames, Jeffrey M.</creatorcontrib><creatorcontrib>Yang, Nancy Y.</creatorcontrib><creatorcontrib>Robinson, David B.</creatorcontrib><creatorcontrib>Sandia National Laboratories</creatorcontrib><title>Nanoporous Pd alloys with compositionally tunable hydrogen storage properties prepared by nanoparticle consolidation</title><title>Journal of materials chemistry</title><description>Nanoporous palladium and palladium alloys are expected to have improved mass transport rates and cycle life compared to bulk materials for energy storage and other applications due to high ratios of surface area to metal volume. Preparation of such materials with high thermal stability and well-controlled metal composition, however, remains a challenge. This work describes a scalable, bottom-up technique for preparing nanoporous palladium alloys based on partial consolidation of dendrimer-encapsulated nanoparticles (DEN). Destabilization of a colloidal suspension of DEN and purification yields high surface area material (60-80 m super(2) g super(-1)) with a broad pore size distribution centered between 20 and 50 nm. This approach allows for precise tuning of product composition through adjustment of the composition of the precursor DEN. Nanoporous Pd sub(0.9)Rh sub(0.1) alloys with uniform composition or with Rh enrichment at pore walls and grain boundaries have been prepared and these structures have been confirmed with high-spatial resolution, aberration corrected quantitative STEM-EDS. Compared to bulk alloys of the same nominal composition, the nanoporous bimetallics show much faster hydrogen uptake kinetics, and store hydrogen at much lower pressure. Pore structure remains intact to temperatures above 300 degree C, suggesting that these materials will have long lifetimes at the temperatures used for hydrogen storage applications.</description><subject>Alloys</subject><subject>Consolidation</subject><subject>Hydrogen storage</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Palladium base alloys</subject><subject>Porosity</subject><issn>0959-9428</issn><issn>1364-5501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LxDAQhoMouH5c_AXBkwjVfLRpc5TFLxD1oOeSTqZulm5TkyzSf2-WFTzNMDzzMPMScsHZDWdS34JYbyTTTdMdkAWXqiyqivFDsmC60oUuRXNMTmJcM8Z5raoFSa9m9JMPfhvpu6VmGPwc6Y9LKwp-M_nokvNjHs80bUfTDUhXsw3-C0cakw_mC-kU_IQhOYy5xckEtLSb6bgzmzyHvAR-jH5w1ux0Z-SoN0PE8796Sj4f7j-WT8XL2-Pz8u6lAKF5KgywUvbMNj0IkKIvGSjNoTRC25oLBUp1HKDkvK8ZKo6lrK21TYc9a5qqk6fkcu_1Mbk2gksIq3zJiJBazmqpG5Whqz2U3_jeYkztxkXAYTAj5lRaruocpCiFzuj1HoXgYwzYt1NwGxPmLGt3-bf_-ctfp0Z8IA</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Cappillino, Patrick J.</creator><creator>Sugar, Joshua D.</creator><creator>Hekmaty, Michelle A.</creator><creator>Jacobs, Benjamin W.</creator><creator>Stavila, Vitalie</creator><creator>Kotula, Paul G.</creator><creator>Chames, Jeffrey M.</creator><creator>Yang, Nancy Y.</creator><creator>Robinson, David B.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20120101</creationdate><title>Nanoporous Pd alloys with compositionally tunable hydrogen storage properties prepared by nanoparticle consolidation</title><author>Cappillino, Patrick J. ; Sugar, Joshua D. ; Hekmaty, Michelle A. ; Jacobs, Benjamin W. ; Stavila, Vitalie ; Kotula, Paul G. ; Chames, Jeffrey M. ; Yang, Nancy Y. ; Robinson, David B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-ac043f0d8fc2c32f40c691c4a29d7126c66b1cc411f70e61e437ddd8bef0885b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alloys</topic><topic>Consolidation</topic><topic>Hydrogen storage</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Palladium base alloys</topic><topic>Porosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cappillino, Patrick J.</creatorcontrib><creatorcontrib>Sugar, Joshua D.</creatorcontrib><creatorcontrib>Hekmaty, Michelle A.</creatorcontrib><creatorcontrib>Jacobs, Benjamin W.</creatorcontrib><creatorcontrib>Stavila, Vitalie</creatorcontrib><creatorcontrib>Kotula, Paul G.</creatorcontrib><creatorcontrib>Chames, Jeffrey M.</creatorcontrib><creatorcontrib>Yang, Nancy Y.</creatorcontrib><creatorcontrib>Robinson, David B.</creatorcontrib><creatorcontrib>Sandia National Laboratories</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cappillino, Patrick J.</au><au>Sugar, Joshua D.</au><au>Hekmaty, Michelle A.</au><au>Jacobs, Benjamin W.</au><au>Stavila, Vitalie</au><au>Kotula, Paul G.</au><au>Chames, Jeffrey M.</au><au>Yang, Nancy Y.</au><au>Robinson, David B.</au><aucorp>Sandia National Laboratories</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoporous Pd alloys with compositionally tunable hydrogen storage properties prepared by nanoparticle consolidation</atitle><jtitle>Journal of materials chemistry</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>22</volume><issue>28</issue><spage>14013</spage><epage>14022</epage><pages>14013-14022</pages><issn>0959-9428</issn><eissn>1364-5501</eissn><abstract>Nanoporous palladium and palladium alloys are expected to have improved mass transport rates and cycle life compared to bulk materials for energy storage and other applications due to high ratios of surface area to metal volume. Preparation of such materials with high thermal stability and well-controlled metal composition, however, remains a challenge. This work describes a scalable, bottom-up technique for preparing nanoporous palladium alloys based on partial consolidation of dendrimer-encapsulated nanoparticles (DEN). Destabilization of a colloidal suspension of DEN and purification yields high surface area material (60-80 m super(2) g super(-1)) with a broad pore size distribution centered between 20 and 50 nm. This approach allows for precise tuning of product composition through adjustment of the composition of the precursor DEN. Nanoporous Pd sub(0.9)Rh sub(0.1) alloys with uniform composition or with Rh enrichment at pore walls and grain boundaries have been prepared and these structures have been confirmed with high-spatial resolution, aberration corrected quantitative STEM-EDS. Compared to bulk alloys of the same nominal composition, the nanoporous bimetallics show much faster hydrogen uptake kinetics, and store hydrogen at much lower pressure. Pore structure remains intact to temperatures above 300 degree C, suggesting that these materials will have long lifetimes at the temperatures used for hydrogen storage applications.</abstract><cop>United States</cop><doi>10.1039/c2jm30988b</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0959-9428 |
ispartof | Journal of materials chemistry, 2012-01, Vol.22 (28), p.14013-14022 |
issn | 0959-9428 1364-5501 |
language | eng |
recordid | cdi_osti_scitechconnect_1073986 |
source | Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Alloys Consolidation Hydrogen storage Nanocomposites Nanomaterials Nanostructure Palladium base alloys Porosity |
title | Nanoporous Pd alloys with compositionally tunable hydrogen storage properties prepared by nanoparticle consolidation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A11%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoporous%20Pd%20alloys%20with%20compositionally%20tunable%20hydrogen%20storage%20properties%20prepared%20by%20nanoparticle%20consolidation&rft.jtitle=Journal%20of%20materials%20chemistry&rft.au=Cappillino,%20Patrick%20J.&rft.aucorp=Sandia%20National%20Laboratories&rft.date=2012-01-01&rft.volume=22&rft.issue=28&rft.spage=14013&rft.epage=14022&rft.pages=14013-14022&rft.issn=0959-9428&rft.eissn=1364-5501&rft_id=info:doi/10.1039/c2jm30988b&rft_dat=%3Cproquest_osti_%3E1671362429%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671362429&rft_id=info:pmid/&rfr_iscdi=true |