Scaling the Ion Trap Quantum Processor

Trapped atomic ions are standards for quantum information processing, serving as quantum memories, hosts of quantum gates in quantum computers and simulators, and nodes of quantum communication networks. Quantum bits based on trapped ions enjoy a rare combination of attributes: They have exquisite c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2013-03, Vol.339 (6124), p.1164-1169
Hauptverfasser: Monroe, C., Kim, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1169
container_issue 6124
container_start_page 1164
container_title Science (American Association for the Advancement of Science)
container_volume 339
creator Monroe, C.
Kim, J.
description Trapped atomic ions are standards for quantum information processing, serving as quantum memories, hosts of quantum gates in quantum computers and simulators, and nodes of quantum communication networks. Quantum bits based on trapped ions enjoy a rare combination of attributes: They have exquisite coherence properties, they can be prepared and measured with nearly 100% efficiency, and they are readily entangled with each other through the Coulomb interaction or remote photonic interconnects. The outstanding challenge is the scaling of trapped ions to hundreds or thousands of qubits and beyond, at which scale quantum processors can outperform their classical counterparts in certain applications. We review the latest progress and prospects in that effort, with the promise of advanced architectures and new technologies, such as microfabricated ion traps and integrated photonics.
doi_str_mv 10.1126/science.1231298
format Article
fullrecord <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1072684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23379955</jstor_id><sourcerecordid>23379955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-39c463c7daa50bbe632ed4432ec5859c66c342baf8088cc58259e165215c95873</originalsourceid><addsrcrecordid>eNqF0U1LAzEQBuAgiq3VsydlURAv2yaZTTY5SvGjUFCxnpd0mtot7aYmuwf_valbRbx4SSDzZJjhJeSU0T5jXA4ClrZC22ccGNdqj3QZ1SLVnMI-6VIKMlU0Fx1yFMKS0ljTcEg6HLKcgVZdcvWCZlVWb0m9sMnIVcnEm03y3JiqbtbJk3doQ3D-mBzMzSrYk93dI693t5PhQzp-vB8Nb8YpZjnUKWjMJGA-M0bQ6dRK4HaWZfFEoYRGKREyPjVzRZXC-MaFtkwKzgRqoXLokYu2rwt1WcTtaosLdFVlsS4YzblUWUTXLdp4997YUBfrMqBdrUxlXRMKJoSWKqdS_E-BCQmaqi29_EOXrvFV3PZLsUgYRDVoFXoXgrfzYuPLtfEfcbpiG0mxi6TYRRJ_nO_6NtO1nf347wwiOGvBMtTO_6pDrrUQ8AnEDI2f</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1315185313</pqid></control><display><type>article</type><title>Scaling the Ion Trap Quantum Processor</title><source>Science Magazine</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Monroe, C. ; Kim, J.</creator><creatorcontrib>Monroe, C. ; Kim, J. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Trapped atomic ions are standards for quantum information processing, serving as quantum memories, hosts of quantum gates in quantum computers and simulators, and nodes of quantum communication networks. Quantum bits based on trapped ions enjoy a rare combination of attributes: They have exquisite coherence properties, they can be prepared and measured with nearly 100% efficiency, and they are readily entangled with each other through the Coulomb interaction or remote photonic interconnects. The outstanding challenge is the scaling of trapped ions to hundreds or thousands of qubits and beyond, at which scale quantum processors can outperform their classical counterparts in certain applications. We review the latest progress and prospects in that effort, with the promise of advanced architectures and new technologies, such as microfabricated ion traps and integrated photonics.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1231298</identifier><identifier>PMID: 23471398</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Atoms ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Coherence ; Communication networks ; Computers ; Crystals ; Data processing ; Information processing ; Ion traps ; Ions ; Laser beams ; Lasers ; Microprocessors ; Photonics ; Photons ; Quantum computers ; Quantum entanglement ; Quantum theory ; Qubits (quantum computing) ; REVIEWS ; Simulators</subject><ispartof>Science (American Association for the Advancement of Science), 2013-03, Vol.339 (6124), p.1164-1169</ispartof><rights>Copyright © 2013 American Association for the Advancement of Science</rights><rights>Copyright © 2013, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-39c463c7daa50bbe632ed4432ec5859c66c342baf8088cc58259e165215c95873</citedby><cites>FETCH-LOGICAL-c473t-39c463c7daa50bbe632ed4432ec5859c66c342baf8088cc58259e165215c95873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23379955$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23379955$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,2884,2885,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23471398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1072684$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Monroe, C.</creatorcontrib><creatorcontrib>Kim, J.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Scaling the Ion Trap Quantum Processor</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Trapped atomic ions are standards for quantum information processing, serving as quantum memories, hosts of quantum gates in quantum computers and simulators, and nodes of quantum communication networks. Quantum bits based on trapped ions enjoy a rare combination of attributes: They have exquisite coherence properties, they can be prepared and measured with nearly 100% efficiency, and they are readily entangled with each other through the Coulomb interaction or remote photonic interconnects. The outstanding challenge is the scaling of trapped ions to hundreds or thousands of qubits and beyond, at which scale quantum processors can outperform their classical counterparts in certain applications. We review the latest progress and prospects in that effort, with the promise of advanced architectures and new technologies, such as microfabricated ion traps and integrated photonics.</description><subject>Atoms</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Coherence</subject><subject>Communication networks</subject><subject>Computers</subject><subject>Crystals</subject><subject>Data processing</subject><subject>Information processing</subject><subject>Ion traps</subject><subject>Ions</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Microprocessors</subject><subject>Photonics</subject><subject>Photons</subject><subject>Quantum computers</subject><subject>Quantum entanglement</subject><subject>Quantum theory</subject><subject>Qubits (quantum computing)</subject><subject>REVIEWS</subject><subject>Simulators</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0U1LAzEQBuAgiq3VsydlURAv2yaZTTY5SvGjUFCxnpd0mtot7aYmuwf_valbRbx4SSDzZJjhJeSU0T5jXA4ClrZC22ccGNdqj3QZ1SLVnMI-6VIKMlU0Fx1yFMKS0ljTcEg6HLKcgVZdcvWCZlVWb0m9sMnIVcnEm03y3JiqbtbJk3doQ3D-mBzMzSrYk93dI693t5PhQzp-vB8Nb8YpZjnUKWjMJGA-M0bQ6dRK4HaWZfFEoYRGKREyPjVzRZXC-MaFtkwKzgRqoXLokYu2rwt1WcTtaosLdFVlsS4YzblUWUTXLdp4997YUBfrMqBdrUxlXRMKJoSWKqdS_E-BCQmaqi29_EOXrvFV3PZLsUgYRDVoFXoXgrfzYuPLtfEfcbpiG0mxi6TYRRJ_nO_6NtO1nf347wwiOGvBMtTO_6pDrrUQ8AnEDI2f</recordid><startdate>20130308</startdate><enddate>20130308</enddate><creator>Monroe, C.</creator><creator>Kim, J.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><general>AAAS</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20130308</creationdate><title>Scaling the Ion Trap Quantum Processor</title><author>Monroe, C. ; Kim, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-39c463c7daa50bbe632ed4432ec5859c66c342baf8088cc58259e165215c95873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Atoms</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Coherence</topic><topic>Communication networks</topic><topic>Computers</topic><topic>Crystals</topic><topic>Data processing</topic><topic>Information processing</topic><topic>Ion traps</topic><topic>Ions</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Microprocessors</topic><topic>Photonics</topic><topic>Photons</topic><topic>Quantum computers</topic><topic>Quantum entanglement</topic><topic>Quantum theory</topic><topic>Qubits (quantum computing)</topic><topic>REVIEWS</topic><topic>Simulators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monroe, C.</creatorcontrib><creatorcontrib>Kim, J.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monroe, C.</au><au>Kim, J.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling the Ion Trap Quantum Processor</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2013-03-08</date><risdate>2013</risdate><volume>339</volume><issue>6124</issue><spage>1164</spage><epage>1169</epage><pages>1164-1169</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Trapped atomic ions are standards for quantum information processing, serving as quantum memories, hosts of quantum gates in quantum computers and simulators, and nodes of quantum communication networks. Quantum bits based on trapped ions enjoy a rare combination of attributes: They have exquisite coherence properties, they can be prepared and measured with nearly 100% efficiency, and they are readily entangled with each other through the Coulomb interaction or remote photonic interconnects. The outstanding challenge is the scaling of trapped ions to hundreds or thousands of qubits and beyond, at which scale quantum processors can outperform their classical counterparts in certain applications. We review the latest progress and prospects in that effort, with the promise of advanced architectures and new technologies, such as microfabricated ion traps and integrated photonics.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>23471398</pmid><doi>10.1126/science.1231298</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2013-03, Vol.339 (6124), p.1164-1169
issn 0036-8075
1095-9203
language eng
recordid cdi_osti_scitechconnect_1072684
source Science Magazine; JSTOR Archive Collection A-Z Listing
subjects Atoms
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Coherence
Communication networks
Computers
Crystals
Data processing
Information processing
Ion traps
Ions
Laser beams
Lasers
Microprocessors
Photonics
Photons
Quantum computers
Quantum entanglement
Quantum theory
Qubits (quantum computing)
REVIEWS
Simulators
title Scaling the Ion Trap Quantum Processor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20the%20Ion%20Trap%20Quantum%20Processor&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Monroe,%20C.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2013-03-08&rft.volume=339&rft.issue=6124&rft.spage=1164&rft.epage=1169&rft.pages=1164-1169&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1231298&rft_dat=%3Cjstor_osti_%3E23379955%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1315185313&rft_id=info:pmid/23471398&rft_jstor_id=23379955&rfr_iscdi=true