Engineering polarization rotation in a ferroelectric superlattice
A key property that drives research in ferroelectric perovskite oxides is their strong piezoelectric response in which an electric field is induced by an applied strain, and vice versa for the converse piezoelectric effect. We have achieved an experimental enhancement of the piezoelectric response a...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2012-10, Vol.109 (16), p.167601-167601, Article 167601 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A key property that drives research in ferroelectric perovskite oxides is their strong piezoelectric response in which an electric field is induced by an applied strain, and vice versa for the converse piezoelectric effect. We have achieved an experimental enhancement of the piezoelectric response and dielectric tunability in artificially layered epitaxial PbTiO(3)/CaTiO(3) superlattices through an engineered rotation of the polarization direction. As the relative layer thicknesses within the superlattice were changed from sample to sample we found evidence for polarization rotation in multiple x-ray diffraction measurements. Associated changes in functional properties were seen in electrical measurements and piezoforce microscopy. The results demonstrate a new approach to inducing polarization rotation under ambient conditions in an artificially layered thin film. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.109.167601 |