Equilibrium Water Contents of Cellulose Films Determined via Solvent Exchange and Quartz Crystal Microbalance with Dissipation Monitoring

Model cellulose surfaces have attracted increasing attention for studying interactions with cell wall matrix polymers and as substrates for enzymatic degradation studies. Quartz crystal microbalance with dissipation monitoring (QCM-D) solvent exchange studies showed that the water content of regener...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2011-08, Vol.12 (8), p.2881-2887
Hauptverfasser: Kittle, Joshua D, Du, Xiaosong, Jiang, Feng, Qian, Chen, Heinze, Thomas, Roman, Maren, Esker, Alan R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2887
container_issue 8
container_start_page 2881
container_title Biomacromolecules
container_volume 12
creator Kittle, Joshua D
Du, Xiaosong
Jiang, Feng
Qian, Chen
Heinze, Thomas
Roman, Maren
Esker, Alan R
description Model cellulose surfaces have attracted increasing attention for studying interactions with cell wall matrix polymers and as substrates for enzymatic degradation studies. Quartz crystal microbalance with dissipation monitoring (QCM-D) solvent exchange studies showed that the water content of regenerated cellulose (RC) films was proportional to the film thickness (d) and was consistent with about five water molecules per anhydroglucose unit. Sulfated nanocrystalline cellulose (SNC) and desulfated nanocrystalline cellulose (DNC) films had comparable water contents and contained about five times more water than RC films. A cellulase mixture served as a probe for studies of substrate accessibility and degradation. Cellulase adsorption onto RC films was independent of d, whereas degradation times increased with d. However, adsorption onto SNC and DNC films increased with d, whereas cellulase degradation times for DNC films were independent of studied d. Enhanced access to guest molecules for SNC and DNC films revealed they are more porous than RC films.
doi_str_mv 10.1021/bm200352q
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1065593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>893324098</sourcerecordid><originalsourceid>FETCH-LOGICAL-a371t-603060af6511e31dd57f773e796b0e531a8a8506da1ff9a282818d092c4bc24e3</originalsourceid><addsrcrecordid>eNpt0c1u1DAUBeAIUdFSWPACyEJCiEWK7cT5WaJ0CkitKgSIZXTj3HRcOfaMr1Mob9C3xjBDu2FlLz4dy-dk2QvBTwSX4t0wS84LJbePsiOhZJWXFZeP_95VXtdtfZg9JbrmnLdFqZ5kh1KoulRVeZTdrbaLsWYIZpnZd4gYWOddRBeJ-Yl1aO1iPSE7M3YmdopJzMbhyG4MsC_e3iTKVj_1GtwVMnAj-7xAiL9YF24pgmUXRgc_gAWnkf0wcc1ODZHZQDTesQvvTPTBuKtn2cEElvD5_jzOvp2tvnYf8_PLD5-69-c5FLWIecULXnGYKiUEFmIcVT3VdYF1Ww0cVSGggUbxagQxTS3IRjaiGXkrdTloWWJxnL3a5XqKpidtIuq19s6hjr3glVJtkdCbHdoEv12QYj8b0qkMcOgX6ptkZMnbJsm3O5l-SRRw6jfBzBBuU1b_Z53-fp1kX-5Tl2HG8V7-myOB13sApMFOIZVm6MGVpWgb1Tw40NRf-yW41Nh_HvwNJ-ekLg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>893324098</pqid></control><display><type>article</type><title>Equilibrium Water Contents of Cellulose Films Determined via Solvent Exchange and Quartz Crystal Microbalance with Dissipation Monitoring</title><source>ACS Publications</source><source>MEDLINE</source><creator>Kittle, Joshua D ; Du, Xiaosong ; Jiang, Feng ; Qian, Chen ; Heinze, Thomas ; Roman, Maren ; Esker, Alan R</creator><creatorcontrib>Kittle, Joshua D ; Du, Xiaosong ; Jiang, Feng ; Qian, Chen ; Heinze, Thomas ; Roman, Maren ; Esker, Alan R ; Energy Frontier Research Centers (EFRC) ; Center for Lignocellulose Structure and Formation (CLSF)</creatorcontrib><description>Model cellulose surfaces have attracted increasing attention for studying interactions with cell wall matrix polymers and as substrates for enzymatic degradation studies. Quartz crystal microbalance with dissipation monitoring (QCM-D) solvent exchange studies showed that the water content of regenerated cellulose (RC) films was proportional to the film thickness (d) and was consistent with about five water molecules per anhydroglucose unit. Sulfated nanocrystalline cellulose (SNC) and desulfated nanocrystalline cellulose (DNC) films had comparable water contents and contained about five times more water than RC films. A cellulase mixture served as a probe for studies of substrate accessibility and degradation. Cellulase adsorption onto RC films was independent of d, whereas degradation times increased with d. However, adsorption onto SNC and DNC films increased with d, whereas cellulase degradation times for DNC films were independent of studied d. Enhanced access to guest molecules for SNC and DNC films revealed they are more porous than RC films.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/bm200352q</identifier><identifier>PMID: 21574564</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; BASIC BIOLOGICAL SCIENCES ; biofuels (including algae and biomass), bio-inspired, membrane, carbon sequestration, materials and chemistry by design, synthesis (self-assembly) ; Cellulose - chemistry ; Cellulose and derivatives ; Crystallization ; Exact sciences and technology ; Nanoparticles ; Natural polymers ; Physicochemistry of polymers ; Quartz ; Solvents - chemistry ; Water - analysis ; Water - chemistry</subject><ispartof>Biomacromolecules, 2011-08, Vol.12 (8), p.2881-2887</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a371t-603060af6511e31dd57f773e796b0e531a8a8506da1ff9a282818d092c4bc24e3</citedby><cites>FETCH-LOGICAL-a371t-603060af6511e31dd57f773e796b0e531a8a8506da1ff9a282818d092c4bc24e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bm200352q$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bm200352q$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24419858$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21574564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1065593$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kittle, Joshua D</creatorcontrib><creatorcontrib>Du, Xiaosong</creatorcontrib><creatorcontrib>Jiang, Feng</creatorcontrib><creatorcontrib>Qian, Chen</creatorcontrib><creatorcontrib>Heinze, Thomas</creatorcontrib><creatorcontrib>Roman, Maren</creatorcontrib><creatorcontrib>Esker, Alan R</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Center for Lignocellulose Structure and Formation (CLSF)</creatorcontrib><title>Equilibrium Water Contents of Cellulose Films Determined via Solvent Exchange and Quartz Crystal Microbalance with Dissipation Monitoring</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>Model cellulose surfaces have attracted increasing attention for studying interactions with cell wall matrix polymers and as substrates for enzymatic degradation studies. Quartz crystal microbalance with dissipation monitoring (QCM-D) solvent exchange studies showed that the water content of regenerated cellulose (RC) films was proportional to the film thickness (d) and was consistent with about five water molecules per anhydroglucose unit. Sulfated nanocrystalline cellulose (SNC) and desulfated nanocrystalline cellulose (DNC) films had comparable water contents and contained about five times more water than RC films. A cellulase mixture served as a probe for studies of substrate accessibility and degradation. Cellulase adsorption onto RC films was independent of d, whereas degradation times increased with d. However, adsorption onto SNC and DNC films increased with d, whereas cellulase degradation times for DNC films were independent of studied d. Enhanced access to guest molecules for SNC and DNC films revealed they are more porous than RC films.</description><subject>Applied sciences</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>biofuels (including algae and biomass), bio-inspired, membrane, carbon sequestration, materials and chemistry by design, synthesis (self-assembly)</subject><subject>Cellulose - chemistry</subject><subject>Cellulose and derivatives</subject><subject>Crystallization</subject><subject>Exact sciences and technology</subject><subject>Nanoparticles</subject><subject>Natural polymers</subject><subject>Physicochemistry of polymers</subject><subject>Quartz</subject><subject>Solvents - chemistry</subject><subject>Water - analysis</subject><subject>Water - chemistry</subject><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0c1u1DAUBeAIUdFSWPACyEJCiEWK7cT5WaJ0CkitKgSIZXTj3HRcOfaMr1Mob9C3xjBDu2FlLz4dy-dk2QvBTwSX4t0wS84LJbePsiOhZJWXFZeP_95VXtdtfZg9JbrmnLdFqZ5kh1KoulRVeZTdrbaLsWYIZpnZd4gYWOddRBeJ-Yl1aO1iPSE7M3YmdopJzMbhyG4MsC_e3iTKVj_1GtwVMnAj-7xAiL9YF24pgmUXRgc_gAWnkf0wcc1ODZHZQDTesQvvTPTBuKtn2cEElvD5_jzOvp2tvnYf8_PLD5-69-c5FLWIecULXnGYKiUEFmIcVT3VdYF1Ww0cVSGggUbxagQxTS3IRjaiGXkrdTloWWJxnL3a5XqKpidtIuq19s6hjr3glVJtkdCbHdoEv12QYj8b0qkMcOgX6ptkZMnbJsm3O5l-SRRw6jfBzBBuU1b_Z53-fp1kX-5Tl2HG8V7-myOB13sApMFOIZVm6MGVpWgb1Tw40NRf-yW41Nh_HvwNJ-ekLg</recordid><startdate>20110808</startdate><enddate>20110808</enddate><creator>Kittle, Joshua D</creator><creator>Du, Xiaosong</creator><creator>Jiang, Feng</creator><creator>Qian, Chen</creator><creator>Heinze, Thomas</creator><creator>Roman, Maren</creator><creator>Esker, Alan R</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20110808</creationdate><title>Equilibrium Water Contents of Cellulose Films Determined via Solvent Exchange and Quartz Crystal Microbalance with Dissipation Monitoring</title><author>Kittle, Joshua D ; Du, Xiaosong ; Jiang, Feng ; Qian, Chen ; Heinze, Thomas ; Roman, Maren ; Esker, Alan R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a371t-603060af6511e31dd57f773e796b0e531a8a8506da1ff9a282818d092c4bc24e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>biofuels (including algae and biomass), bio-inspired, membrane, carbon sequestration, materials and chemistry by design, synthesis (self-assembly)</topic><topic>Cellulose - chemistry</topic><topic>Cellulose and derivatives</topic><topic>Crystallization</topic><topic>Exact sciences and technology</topic><topic>Nanoparticles</topic><topic>Natural polymers</topic><topic>Physicochemistry of polymers</topic><topic>Quartz</topic><topic>Solvents - chemistry</topic><topic>Water - analysis</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kittle, Joshua D</creatorcontrib><creatorcontrib>Du, Xiaosong</creatorcontrib><creatorcontrib>Jiang, Feng</creatorcontrib><creatorcontrib>Qian, Chen</creatorcontrib><creatorcontrib>Heinze, Thomas</creatorcontrib><creatorcontrib>Roman, Maren</creatorcontrib><creatorcontrib>Esker, Alan R</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Center for Lignocellulose Structure and Formation (CLSF)</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kittle, Joshua D</au><au>Du, Xiaosong</au><au>Jiang, Feng</au><au>Qian, Chen</au><au>Heinze, Thomas</au><au>Roman, Maren</au><au>Esker, Alan R</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Center for Lignocellulose Structure and Formation (CLSF)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equilibrium Water Contents of Cellulose Films Determined via Solvent Exchange and Quartz Crystal Microbalance with Dissipation Monitoring</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2011-08-08</date><risdate>2011</risdate><volume>12</volume><issue>8</issue><spage>2881</spage><epage>2887</epage><pages>2881-2887</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>Model cellulose surfaces have attracted increasing attention for studying interactions with cell wall matrix polymers and as substrates for enzymatic degradation studies. Quartz crystal microbalance with dissipation monitoring (QCM-D) solvent exchange studies showed that the water content of regenerated cellulose (RC) films was proportional to the film thickness (d) and was consistent with about five water molecules per anhydroglucose unit. Sulfated nanocrystalline cellulose (SNC) and desulfated nanocrystalline cellulose (DNC) films had comparable water contents and contained about five times more water than RC films. A cellulase mixture served as a probe for studies of substrate accessibility and degradation. Cellulase adsorption onto RC films was independent of d, whereas degradation times increased with d. However, adsorption onto SNC and DNC films increased with d, whereas cellulase degradation times for DNC films were independent of studied d. Enhanced access to guest molecules for SNC and DNC films revealed they are more porous than RC films.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21574564</pmid><doi>10.1021/bm200352q</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1525-7797
ispartof Biomacromolecules, 2011-08, Vol.12 (8), p.2881-2887
issn 1525-7797
1526-4602
language eng
recordid cdi_osti_scitechconnect_1065593
source ACS Publications; MEDLINE
subjects Applied sciences
BASIC BIOLOGICAL SCIENCES
biofuels (including algae and biomass), bio-inspired, membrane, carbon sequestration, materials and chemistry by design, synthesis (self-assembly)
Cellulose - chemistry
Cellulose and derivatives
Crystallization
Exact sciences and technology
Nanoparticles
Natural polymers
Physicochemistry of polymers
Quartz
Solvents - chemistry
Water - analysis
Water - chemistry
title Equilibrium Water Contents of Cellulose Films Determined via Solvent Exchange and Quartz Crystal Microbalance with Dissipation Monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A01%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equilibrium%20Water%20Contents%20of%20Cellulose%20Films%20Determined%20via%20Solvent%20Exchange%20and%20Quartz%20Crystal%20Microbalance%20with%20Dissipation%20Monitoring&rft.jtitle=Biomacromolecules&rft.au=Kittle,%20Joshua%20D&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2011-08-08&rft.volume=12&rft.issue=8&rft.spage=2881&rft.epage=2887&rft.pages=2881-2887&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/bm200352q&rft_dat=%3Cproquest_osti_%3E893324098%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=893324098&rft_id=info:pmid/21574564&rfr_iscdi=true