Equilibrium Water Contents of Cellulose Films Determined via Solvent Exchange and Quartz Crystal Microbalance with Dissipation Monitoring
Model cellulose surfaces have attracted increasing attention for studying interactions with cell wall matrix polymers and as substrates for enzymatic degradation studies. Quartz crystal microbalance with dissipation monitoring (QCM-D) solvent exchange studies showed that the water content of regener...
Gespeichert in:
Veröffentlicht in: | Biomacromolecules 2011-08, Vol.12 (8), p.2881-2887 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2887 |
---|---|
container_issue | 8 |
container_start_page | 2881 |
container_title | Biomacromolecules |
container_volume | 12 |
creator | Kittle, Joshua D Du, Xiaosong Jiang, Feng Qian, Chen Heinze, Thomas Roman, Maren Esker, Alan R |
description | Model cellulose surfaces have attracted increasing attention for studying interactions with cell wall matrix polymers and as substrates for enzymatic degradation studies. Quartz crystal microbalance with dissipation monitoring (QCM-D) solvent exchange studies showed that the water content of regenerated cellulose (RC) films was proportional to the film thickness (d) and was consistent with about five water molecules per anhydroglucose unit. Sulfated nanocrystalline cellulose (SNC) and desulfated nanocrystalline cellulose (DNC) films had comparable water contents and contained about five times more water than RC films. A cellulase mixture served as a probe for studies of substrate accessibility and degradation. Cellulase adsorption onto RC films was independent of d, whereas degradation times increased with d. However, adsorption onto SNC and DNC films increased with d, whereas cellulase degradation times for DNC films were independent of studied d. Enhanced access to guest molecules for SNC and DNC films revealed they are more porous than RC films. |
doi_str_mv | 10.1021/bm200352q |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1065593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>893324098</sourcerecordid><originalsourceid>FETCH-LOGICAL-a371t-603060af6511e31dd57f773e796b0e531a8a8506da1ff9a282818d092c4bc24e3</originalsourceid><addsrcrecordid>eNpt0c1u1DAUBeAIUdFSWPACyEJCiEWK7cT5WaJ0CkitKgSIZXTj3HRcOfaMr1Mob9C3xjBDu2FlLz4dy-dk2QvBTwSX4t0wS84LJbePsiOhZJWXFZeP_95VXtdtfZg9JbrmnLdFqZ5kh1KoulRVeZTdrbaLsWYIZpnZd4gYWOddRBeJ-Yl1aO1iPSE7M3YmdopJzMbhyG4MsC_e3iTKVj_1GtwVMnAj-7xAiL9YF24pgmUXRgc_gAWnkf0wcc1ODZHZQDTesQvvTPTBuKtn2cEElvD5_jzOvp2tvnYf8_PLD5-69-c5FLWIecULXnGYKiUEFmIcVT3VdYF1Ww0cVSGggUbxagQxTS3IRjaiGXkrdTloWWJxnL3a5XqKpidtIuq19s6hjr3glVJtkdCbHdoEv12QYj8b0qkMcOgX6ptkZMnbJsm3O5l-SRRw6jfBzBBuU1b_Z53-fp1kX-5Tl2HG8V7-myOB13sApMFOIZVm6MGVpWgb1Tw40NRf-yW41Nh_HvwNJ-ekLg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>893324098</pqid></control><display><type>article</type><title>Equilibrium Water Contents of Cellulose Films Determined via Solvent Exchange and Quartz Crystal Microbalance with Dissipation Monitoring</title><source>ACS Publications</source><source>MEDLINE</source><creator>Kittle, Joshua D ; Du, Xiaosong ; Jiang, Feng ; Qian, Chen ; Heinze, Thomas ; Roman, Maren ; Esker, Alan R</creator><creatorcontrib>Kittle, Joshua D ; Du, Xiaosong ; Jiang, Feng ; Qian, Chen ; Heinze, Thomas ; Roman, Maren ; Esker, Alan R ; Energy Frontier Research Centers (EFRC) ; Center for Lignocellulose Structure and Formation (CLSF)</creatorcontrib><description>Model cellulose surfaces have attracted increasing attention for studying interactions with cell wall matrix polymers and as substrates for enzymatic degradation studies. Quartz crystal microbalance with dissipation monitoring (QCM-D) solvent exchange studies showed that the water content of regenerated cellulose (RC) films was proportional to the film thickness (d) and was consistent with about five water molecules per anhydroglucose unit. Sulfated nanocrystalline cellulose (SNC) and desulfated nanocrystalline cellulose (DNC) films had comparable water contents and contained about five times more water than RC films. A cellulase mixture served as a probe for studies of substrate accessibility and degradation. Cellulase adsorption onto RC films was independent of d, whereas degradation times increased with d. However, adsorption onto SNC and DNC films increased with d, whereas cellulase degradation times for DNC films were independent of studied d. Enhanced access to guest molecules for SNC and DNC films revealed they are more porous than RC films.</description><identifier>ISSN: 1525-7797</identifier><identifier>EISSN: 1526-4602</identifier><identifier>DOI: 10.1021/bm200352q</identifier><identifier>PMID: 21574564</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; BASIC BIOLOGICAL SCIENCES ; biofuels (including algae and biomass), bio-inspired, membrane, carbon sequestration, materials and chemistry by design, synthesis (self-assembly) ; Cellulose - chemistry ; Cellulose and derivatives ; Crystallization ; Exact sciences and technology ; Nanoparticles ; Natural polymers ; Physicochemistry of polymers ; Quartz ; Solvents - chemistry ; Water - analysis ; Water - chemistry</subject><ispartof>Biomacromolecules, 2011-08, Vol.12 (8), p.2881-2887</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a371t-603060af6511e31dd57f773e796b0e531a8a8506da1ff9a282818d092c4bc24e3</citedby><cites>FETCH-LOGICAL-a371t-603060af6511e31dd57f773e796b0e531a8a8506da1ff9a282818d092c4bc24e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bm200352q$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bm200352q$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24419858$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21574564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1065593$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kittle, Joshua D</creatorcontrib><creatorcontrib>Du, Xiaosong</creatorcontrib><creatorcontrib>Jiang, Feng</creatorcontrib><creatorcontrib>Qian, Chen</creatorcontrib><creatorcontrib>Heinze, Thomas</creatorcontrib><creatorcontrib>Roman, Maren</creatorcontrib><creatorcontrib>Esker, Alan R</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Center for Lignocellulose Structure and Formation (CLSF)</creatorcontrib><title>Equilibrium Water Contents of Cellulose Films Determined via Solvent Exchange and Quartz Crystal Microbalance with Dissipation Monitoring</title><title>Biomacromolecules</title><addtitle>Biomacromolecules</addtitle><description>Model cellulose surfaces have attracted increasing attention for studying interactions with cell wall matrix polymers and as substrates for enzymatic degradation studies. Quartz crystal microbalance with dissipation monitoring (QCM-D) solvent exchange studies showed that the water content of regenerated cellulose (RC) films was proportional to the film thickness (d) and was consistent with about five water molecules per anhydroglucose unit. Sulfated nanocrystalline cellulose (SNC) and desulfated nanocrystalline cellulose (DNC) films had comparable water contents and contained about five times more water than RC films. A cellulase mixture served as a probe for studies of substrate accessibility and degradation. Cellulase adsorption onto RC films was independent of d, whereas degradation times increased with d. However, adsorption onto SNC and DNC films increased with d, whereas cellulase degradation times for DNC films were independent of studied d. Enhanced access to guest molecules for SNC and DNC films revealed they are more porous than RC films.</description><subject>Applied sciences</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>biofuels (including algae and biomass), bio-inspired, membrane, carbon sequestration, materials and chemistry by design, synthesis (self-assembly)</subject><subject>Cellulose - chemistry</subject><subject>Cellulose and derivatives</subject><subject>Crystallization</subject><subject>Exact sciences and technology</subject><subject>Nanoparticles</subject><subject>Natural polymers</subject><subject>Physicochemistry of polymers</subject><subject>Quartz</subject><subject>Solvents - chemistry</subject><subject>Water - analysis</subject><subject>Water - chemistry</subject><issn>1525-7797</issn><issn>1526-4602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0c1u1DAUBeAIUdFSWPACyEJCiEWK7cT5WaJ0CkitKgSIZXTj3HRcOfaMr1Mob9C3xjBDu2FlLz4dy-dk2QvBTwSX4t0wS84LJbePsiOhZJWXFZeP_95VXtdtfZg9JbrmnLdFqZ5kh1KoulRVeZTdrbaLsWYIZpnZd4gYWOddRBeJ-Yl1aO1iPSE7M3YmdopJzMbhyG4MsC_e3iTKVj_1GtwVMnAj-7xAiL9YF24pgmUXRgc_gAWnkf0wcc1ODZHZQDTesQvvTPTBuKtn2cEElvD5_jzOvp2tvnYf8_PLD5-69-c5FLWIecULXnGYKiUEFmIcVT3VdYF1Ww0cVSGggUbxagQxTS3IRjaiGXkrdTloWWJxnL3a5XqKpidtIuq19s6hjr3glVJtkdCbHdoEv12QYj8b0qkMcOgX6ptkZMnbJsm3O5l-SRRw6jfBzBBuU1b_Z53-fp1kX-5Tl2HG8V7-myOB13sApMFOIZVm6MGVpWgb1Tw40NRf-yW41Nh_HvwNJ-ekLg</recordid><startdate>20110808</startdate><enddate>20110808</enddate><creator>Kittle, Joshua D</creator><creator>Du, Xiaosong</creator><creator>Jiang, Feng</creator><creator>Qian, Chen</creator><creator>Heinze, Thomas</creator><creator>Roman, Maren</creator><creator>Esker, Alan R</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20110808</creationdate><title>Equilibrium Water Contents of Cellulose Films Determined via Solvent Exchange and Quartz Crystal Microbalance with Dissipation Monitoring</title><author>Kittle, Joshua D ; Du, Xiaosong ; Jiang, Feng ; Qian, Chen ; Heinze, Thomas ; Roman, Maren ; Esker, Alan R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a371t-603060af6511e31dd57f773e796b0e531a8a8506da1ff9a282818d092c4bc24e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>biofuels (including algae and biomass), bio-inspired, membrane, carbon sequestration, materials and chemistry by design, synthesis (self-assembly)</topic><topic>Cellulose - chemistry</topic><topic>Cellulose and derivatives</topic><topic>Crystallization</topic><topic>Exact sciences and technology</topic><topic>Nanoparticles</topic><topic>Natural polymers</topic><topic>Physicochemistry of polymers</topic><topic>Quartz</topic><topic>Solvents - chemistry</topic><topic>Water - analysis</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kittle, Joshua D</creatorcontrib><creatorcontrib>Du, Xiaosong</creatorcontrib><creatorcontrib>Jiang, Feng</creatorcontrib><creatorcontrib>Qian, Chen</creatorcontrib><creatorcontrib>Heinze, Thomas</creatorcontrib><creatorcontrib>Roman, Maren</creatorcontrib><creatorcontrib>Esker, Alan R</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Center for Lignocellulose Structure and Formation (CLSF)</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Biomacromolecules</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kittle, Joshua D</au><au>Du, Xiaosong</au><au>Jiang, Feng</au><au>Qian, Chen</au><au>Heinze, Thomas</au><au>Roman, Maren</au><au>Esker, Alan R</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Center for Lignocellulose Structure and Formation (CLSF)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equilibrium Water Contents of Cellulose Films Determined via Solvent Exchange and Quartz Crystal Microbalance with Dissipation Monitoring</atitle><jtitle>Biomacromolecules</jtitle><addtitle>Biomacromolecules</addtitle><date>2011-08-08</date><risdate>2011</risdate><volume>12</volume><issue>8</issue><spage>2881</spage><epage>2887</epage><pages>2881-2887</pages><issn>1525-7797</issn><eissn>1526-4602</eissn><abstract>Model cellulose surfaces have attracted increasing attention for studying interactions with cell wall matrix polymers and as substrates for enzymatic degradation studies. Quartz crystal microbalance with dissipation monitoring (QCM-D) solvent exchange studies showed that the water content of regenerated cellulose (RC) films was proportional to the film thickness (d) and was consistent with about five water molecules per anhydroglucose unit. Sulfated nanocrystalline cellulose (SNC) and desulfated nanocrystalline cellulose (DNC) films had comparable water contents and contained about five times more water than RC films. A cellulase mixture served as a probe for studies of substrate accessibility and degradation. Cellulase adsorption onto RC films was independent of d, whereas degradation times increased with d. However, adsorption onto SNC and DNC films increased with d, whereas cellulase degradation times for DNC films were independent of studied d. Enhanced access to guest molecules for SNC and DNC films revealed they are more porous than RC films.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21574564</pmid><doi>10.1021/bm200352q</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-7797 |
ispartof | Biomacromolecules, 2011-08, Vol.12 (8), p.2881-2887 |
issn | 1525-7797 1526-4602 |
language | eng |
recordid | cdi_osti_scitechconnect_1065593 |
source | ACS Publications; MEDLINE |
subjects | Applied sciences BASIC BIOLOGICAL SCIENCES biofuels (including algae and biomass), bio-inspired, membrane, carbon sequestration, materials and chemistry by design, synthesis (self-assembly) Cellulose - chemistry Cellulose and derivatives Crystallization Exact sciences and technology Nanoparticles Natural polymers Physicochemistry of polymers Quartz Solvents - chemistry Water - analysis Water - chemistry |
title | Equilibrium Water Contents of Cellulose Films Determined via Solvent Exchange and Quartz Crystal Microbalance with Dissipation Monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T16%3A01%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equilibrium%20Water%20Contents%20of%20Cellulose%20Films%20Determined%20via%20Solvent%20Exchange%20and%20Quartz%20Crystal%20Microbalance%20with%20Dissipation%20Monitoring&rft.jtitle=Biomacromolecules&rft.au=Kittle,%20Joshua%20D&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2011-08-08&rft.volume=12&rft.issue=8&rft.spage=2881&rft.epage=2887&rft.pages=2881-2887&rft.issn=1525-7797&rft.eissn=1526-4602&rft_id=info:doi/10.1021/bm200352q&rft_dat=%3Cproquest_osti_%3E893324098%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=893324098&rft_id=info:pmid/21574564&rfr_iscdi=true |