Mechanism of efficient anti-Markovnikov olefin hydroarylation catalyzed by homogeneous Ir(III) complexes
The mechanism of the hydroarylation reaction between unactivated olefins (ethylene, propylene, and styrene) and benzene catalyzed by [(R)Ir([small mu ]-acac-O,O,C3)-(acac-O,O)2]2 and [R-Ir(acac-O,O)2(L)] (R = acetylacetonato, CH3, CH2CH3, Ph, or CH2CH2Ph, and L = H2O or pyridine) Ir(iii) complexes w...
Gespeichert in:
Veröffentlicht in: | Green chemistry : an international journal and green chemistry resource : GC 2011-01, Vol.13 (1), p.69-81 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 81 |
---|---|
container_issue | 1 |
container_start_page | 69 |
container_title | Green chemistry : an international journal and green chemistry resource : GC |
container_volume | 13 |
creator | BHALLA, Gaurav BISCHOF, Steven M CHIN HIN LEUNG OXGAARD, Jonas GODDARD, William A PERIANA, Roy A GANESH, Somesh K XIANG YANG LIU JONES, C. J BORZENKO, Andrey TENN, William J ESS, Daniel H HASHIGUCHI, Brian G LOKARE, Kapil S |
description | The mechanism of the hydroarylation reaction between unactivated olefins (ethylene, propylene, and styrene) and benzene catalyzed by [(R)Ir([small mu ]-acac-O,O,C3)-(acac-O,O)2]2 and [R-Ir(acac-O,O)2(L)] (R = acetylacetonato, CH3, CH2CH3, Ph, or CH2CH2Ph, and L = H2O or pyridine) Ir(iii) complexes was studied by experimental methods. The system is selective for generating the anti-Markovnikov product of linear alkylarenes (61 : 39 for benzene + propylene and 98 : 2 for benzene + styrene). The reaction mechanism was found to follow a rate law with first-order dependence on benzene and catalyst, but a non-linear dependence on olefin. 13C-labelling studies with CH313CH2-Ir-Py showed that reversible [small beta]-hydride elimination is facile, but unproductive, giving exclusively saturated alkylarene products. The migration of the 13C-label from the [small alpha] to [small beta]-positions was found to be slower than the C-H activation of benzene (and thus formation of ethane and Ph-d5-Ir-Py). Kinetic analysis under steady state conditions gave a ratio of the rate constants for CH activation and [small beta]-hydride elimination (kCH: k[small beta]) of [similar]0.5. The comparable magnitude of these rates suggests a common rate determining transition state/intermediate, which has been shown previously with B3LYP density functional theory (DFT) calculations. Overall, the mechanism of hydroarylation proceeds through a series of pre-equilibrium dissociative steps involving rupture of the dinuclear species or the loss of L from Ph-Ir-L to the solvento, 16-electron species, Ph-Ir(acac-O,O)2-Sol (where Sol refers to coordinated solvent). This species then undergoes trans to cis isomerization of the acetylacetonato ligand to yield the pseudo octahedral species cis-Ph-Ir-Sol, which is followed by olefin insertion (the regioselective and rate determining step), and then activation of the C-H bond of an incoming benzene to generate the product and regenerate the catalyst. |
doi_str_mv | 10.1039/c0gc00330a |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1064812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762125673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-e23999c3bb32f6f779cbfbecde04e659219e777b0a28403af4bfaf947152bb8f3</originalsourceid><addsrcrecordid>eNp9kU1PHDEMhkdVkUqhl_6CqFLFhzRtvnYyOaJVgZFAXNrzKPE6bNqZZEkCYvn1DSziyMX24fFr-3XTfGX0B6NC_wR6C5QKQc2HZp_JTrSaK_rxre74p-Zzzn8pZUx1cr9ZXyOsTfB5JtERdM6Dx1CICcW31yb9iw_B10DihM4Hst6uUjRpO5niYyBgipm2T7gidkvWcY63GDDeZzKk42EYTgjEeTPhI-bDZs-ZKeOX13zQ_Dn_9Xt52V7dXAzLs6sWRK9Li1xorUFYK7jrnFIarLMIK6QSu4XmTKNSylLDe0mFcdI647RUbMGt7Z04aL7tdGMufszgSz0QYggIZWS0kz3jFTraQZsU7-4xl3H2GXCazMv2o6aK9arnqpLH75LVRc74olOioqc7FFLMOaEbN8nP1as6dnz-zrikF8uX75xV-PurrslgJpdMAJ_fOrhQXS9lL_4DgiePzA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1762125673</pqid></control><display><type>article</type><title>Mechanism of efficient anti-Markovnikov olefin hydroarylation catalyzed by homogeneous Ir(III) complexes</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>BHALLA, Gaurav ; BISCHOF, Steven M ; CHIN HIN LEUNG ; OXGAARD, Jonas ; GODDARD, William A ; PERIANA, Roy A ; GANESH, Somesh K ; XIANG YANG LIU ; JONES, C. J ; BORZENKO, Andrey ; TENN, William J ; ESS, Daniel H ; HASHIGUCHI, Brian G ; LOKARE, Kapil S</creator><creatorcontrib>BHALLA, Gaurav ; BISCHOF, Steven M ; CHIN HIN LEUNG ; OXGAARD, Jonas ; GODDARD, William A ; PERIANA, Roy A ; GANESH, Somesh K ; XIANG YANG LIU ; JONES, C. J ; BORZENKO, Andrey ; TENN, William J ; ESS, Daniel H ; HASHIGUCHI, Brian G ; LOKARE, Kapil S ; Center for Catalytic Hydrocarbon Functionalization (CCHF) ; Energy Frontier Research Centers (EFRC)</creatorcontrib><description>The mechanism of the hydroarylation reaction between unactivated olefins (ethylene, propylene, and styrene) and benzene catalyzed by [(R)Ir([small mu ]-acac-O,O,C3)-(acac-O,O)2]2 and [R-Ir(acac-O,O)2(L)] (R = acetylacetonato, CH3, CH2CH3, Ph, or CH2CH2Ph, and L = H2O or pyridine) Ir(iii) complexes was studied by experimental methods. The system is selective for generating the anti-Markovnikov product of linear alkylarenes (61 : 39 for benzene + propylene and 98 : 2 for benzene + styrene). The reaction mechanism was found to follow a rate law with first-order dependence on benzene and catalyst, but a non-linear dependence on olefin. 13C-labelling studies with CH313CH2-Ir-Py showed that reversible [small beta]-hydride elimination is facile, but unproductive, giving exclusively saturated alkylarene products. The migration of the 13C-label from the [small alpha] to [small beta]-positions was found to be slower than the C-H activation of benzene (and thus formation of ethane and Ph-d5-Ir-Py). Kinetic analysis under steady state conditions gave a ratio of the rate constants for CH activation and [small beta]-hydride elimination (kCH: k[small beta]) of [similar]0.5. The comparable magnitude of these rates suggests a common rate determining transition state/intermediate, which has been shown previously with B3LYP density functional theory (DFT) calculations. Overall, the mechanism of hydroarylation proceeds through a series of pre-equilibrium dissociative steps involving rupture of the dinuclear species or the loss of L from Ph-Ir-L to the solvento, 16-electron species, Ph-Ir(acac-O,O)2-Sol (where Sol refers to coordinated solvent). This species then undergoes trans to cis isomerization of the acetylacetonato ligand to yield the pseudo octahedral species cis-Ph-Ir-Sol, which is followed by olefin insertion (the regioselective and rate determining step), and then activation of the C-H bond of an incoming benzene to generate the product and regenerate the catalyst.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/c0gc00330a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Activation ; Benzene ; Catalysis ; catalysis (homogeneous), catalysis (heterogeneous), bio-inspired, hydrogen and fuel cells, materials and chemistry by design, synthesis (novel materials) ; Catalysts ; Catalysts: preparations and properties ; Chemistry ; Ethylene ; Exact sciences and technology ; General and physical chemistry ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Kinetics and mechanisms ; Noncondensed benzenic compounds ; Olefins ; Organic chemistry ; Preparations and properties ; Propylene ; Pyridines ; Reactivity and mechanisms ; Styrenes ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2011-01, Vol.13 (1), p.69-81</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-e23999c3bb32f6f779cbfbecde04e659219e777b0a28403af4bfaf947152bb8f3</citedby><cites>FETCH-LOGICAL-c389t-e23999c3bb32f6f779cbfbecde04e659219e777b0a28403af4bfaf947152bb8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23768448$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1064812$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>BHALLA, Gaurav</creatorcontrib><creatorcontrib>BISCHOF, Steven M</creatorcontrib><creatorcontrib>CHIN HIN LEUNG</creatorcontrib><creatorcontrib>OXGAARD, Jonas</creatorcontrib><creatorcontrib>GODDARD, William A</creatorcontrib><creatorcontrib>PERIANA, Roy A</creatorcontrib><creatorcontrib>GANESH, Somesh K</creatorcontrib><creatorcontrib>XIANG YANG LIU</creatorcontrib><creatorcontrib>JONES, C. J</creatorcontrib><creatorcontrib>BORZENKO, Andrey</creatorcontrib><creatorcontrib>TENN, William J</creatorcontrib><creatorcontrib>ESS, Daniel H</creatorcontrib><creatorcontrib>HASHIGUCHI, Brian G</creatorcontrib><creatorcontrib>LOKARE, Kapil S</creatorcontrib><creatorcontrib>Center for Catalytic Hydrocarbon Functionalization (CCHF)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><title>Mechanism of efficient anti-Markovnikov olefin hydroarylation catalyzed by homogeneous Ir(III) complexes</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>The mechanism of the hydroarylation reaction between unactivated olefins (ethylene, propylene, and styrene) and benzene catalyzed by [(R)Ir([small mu ]-acac-O,O,C3)-(acac-O,O)2]2 and [R-Ir(acac-O,O)2(L)] (R = acetylacetonato, CH3, CH2CH3, Ph, or CH2CH2Ph, and L = H2O or pyridine) Ir(iii) complexes was studied by experimental methods. The system is selective for generating the anti-Markovnikov product of linear alkylarenes (61 : 39 for benzene + propylene and 98 : 2 for benzene + styrene). The reaction mechanism was found to follow a rate law with first-order dependence on benzene and catalyst, but a non-linear dependence on olefin. 13C-labelling studies with CH313CH2-Ir-Py showed that reversible [small beta]-hydride elimination is facile, but unproductive, giving exclusively saturated alkylarene products. The migration of the 13C-label from the [small alpha] to [small beta]-positions was found to be slower than the C-H activation of benzene (and thus formation of ethane and Ph-d5-Ir-Py). Kinetic analysis under steady state conditions gave a ratio of the rate constants for CH activation and [small beta]-hydride elimination (kCH: k[small beta]) of [similar]0.5. The comparable magnitude of these rates suggests a common rate determining transition state/intermediate, which has been shown previously with B3LYP density functional theory (DFT) calculations. Overall, the mechanism of hydroarylation proceeds through a series of pre-equilibrium dissociative steps involving rupture of the dinuclear species or the loss of L from Ph-Ir-L to the solvento, 16-electron species, Ph-Ir(acac-O,O)2-Sol (where Sol refers to coordinated solvent). This species then undergoes trans to cis isomerization of the acetylacetonato ligand to yield the pseudo octahedral species cis-Ph-Ir-Sol, which is followed by olefin insertion (the regioselective and rate determining step), and then activation of the C-H bond of an incoming benzene to generate the product and regenerate the catalyst.</description><subject>Activation</subject><subject>Benzene</subject><subject>Catalysis</subject><subject>catalysis (homogeneous), catalysis (heterogeneous), bio-inspired, hydrogen and fuel cells, materials and chemistry by design, synthesis (novel materials)</subject><subject>Catalysts</subject><subject>Catalysts: preparations and properties</subject><subject>Chemistry</subject><subject>Ethylene</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Kinetics and mechanisms</subject><subject>Noncondensed benzenic compounds</subject><subject>Olefins</subject><subject>Organic chemistry</subject><subject>Preparations and properties</subject><subject>Propylene</subject><subject>Pyridines</subject><subject>Reactivity and mechanisms</subject><subject>Styrenes</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kU1PHDEMhkdVkUqhl_6CqFLFhzRtvnYyOaJVgZFAXNrzKPE6bNqZZEkCYvn1DSziyMX24fFr-3XTfGX0B6NC_wR6C5QKQc2HZp_JTrSaK_rxre74p-Zzzn8pZUx1cr9ZXyOsTfB5JtERdM6Dx1CICcW31yb9iw_B10DihM4Hst6uUjRpO5niYyBgipm2T7gidkvWcY63GDDeZzKk42EYTgjEeTPhI-bDZs-ZKeOX13zQ_Dn_9Xt52V7dXAzLs6sWRK9Li1xorUFYK7jrnFIarLMIK6QSu4XmTKNSylLDe0mFcdI647RUbMGt7Z04aL7tdGMufszgSz0QYggIZWS0kz3jFTraQZsU7-4xl3H2GXCazMv2o6aK9arnqpLH75LVRc74olOioqc7FFLMOaEbN8nP1as6dnz-zrikF8uX75xV-PurrslgJpdMAJ_fOrhQXS9lL_4DgiePzA</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>BHALLA, Gaurav</creator><creator>BISCHOF, Steven M</creator><creator>CHIN HIN LEUNG</creator><creator>OXGAARD, Jonas</creator><creator>GODDARD, William A</creator><creator>PERIANA, Roy A</creator><creator>GANESH, Somesh K</creator><creator>XIANG YANG LIU</creator><creator>JONES, C. J</creator><creator>BORZENKO, Andrey</creator><creator>TENN, William J</creator><creator>ESS, Daniel H</creator><creator>HASHIGUCHI, Brian G</creator><creator>LOKARE, Kapil S</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>OTOTI</scope></search><sort><creationdate>20110101</creationdate><title>Mechanism of efficient anti-Markovnikov olefin hydroarylation catalyzed by homogeneous Ir(III) complexes</title><author>BHALLA, Gaurav ; BISCHOF, Steven M ; CHIN HIN LEUNG ; OXGAARD, Jonas ; GODDARD, William A ; PERIANA, Roy A ; GANESH, Somesh K ; XIANG YANG LIU ; JONES, C. J ; BORZENKO, Andrey ; TENN, William J ; ESS, Daniel H ; HASHIGUCHI, Brian G ; LOKARE, Kapil S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-e23999c3bb32f6f779cbfbecde04e659219e777b0a28403af4bfaf947152bb8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Activation</topic><topic>Benzene</topic><topic>Catalysis</topic><topic>catalysis (homogeneous), catalysis (heterogeneous), bio-inspired, hydrogen and fuel cells, materials and chemistry by design, synthesis (novel materials)</topic><topic>Catalysts</topic><topic>Catalysts: preparations and properties</topic><topic>Chemistry</topic><topic>Ethylene</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Kinetics and mechanisms</topic><topic>Noncondensed benzenic compounds</topic><topic>Olefins</topic><topic>Organic chemistry</topic><topic>Preparations and properties</topic><topic>Propylene</topic><topic>Pyridines</topic><topic>Reactivity and mechanisms</topic><topic>Styrenes</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BHALLA, Gaurav</creatorcontrib><creatorcontrib>BISCHOF, Steven M</creatorcontrib><creatorcontrib>CHIN HIN LEUNG</creatorcontrib><creatorcontrib>OXGAARD, Jonas</creatorcontrib><creatorcontrib>GODDARD, William A</creatorcontrib><creatorcontrib>PERIANA, Roy A</creatorcontrib><creatorcontrib>GANESH, Somesh K</creatorcontrib><creatorcontrib>XIANG YANG LIU</creatorcontrib><creatorcontrib>JONES, C. J</creatorcontrib><creatorcontrib>BORZENKO, Andrey</creatorcontrib><creatorcontrib>TENN, William J</creatorcontrib><creatorcontrib>ESS, Daniel H</creatorcontrib><creatorcontrib>HASHIGUCHI, Brian G</creatorcontrib><creatorcontrib>LOKARE, Kapil S</creatorcontrib><creatorcontrib>Center for Catalytic Hydrocarbon Functionalization (CCHF)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>OSTI.GOV</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BHALLA, Gaurav</au><au>BISCHOF, Steven M</au><au>CHIN HIN LEUNG</au><au>OXGAARD, Jonas</au><au>GODDARD, William A</au><au>PERIANA, Roy A</au><au>GANESH, Somesh K</au><au>XIANG YANG LIU</au><au>JONES, C. J</au><au>BORZENKO, Andrey</au><au>TENN, William J</au><au>ESS, Daniel H</au><au>HASHIGUCHI, Brian G</au><au>LOKARE, Kapil S</au><aucorp>Center for Catalytic Hydrocarbon Functionalization (CCHF)</aucorp><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of efficient anti-Markovnikov olefin hydroarylation catalyzed by homogeneous Ir(III) complexes</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>13</volume><issue>1</issue><spage>69</spage><epage>81</epage><pages>69-81</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>The mechanism of the hydroarylation reaction between unactivated olefins (ethylene, propylene, and styrene) and benzene catalyzed by [(R)Ir([small mu ]-acac-O,O,C3)-(acac-O,O)2]2 and [R-Ir(acac-O,O)2(L)] (R = acetylacetonato, CH3, CH2CH3, Ph, or CH2CH2Ph, and L = H2O or pyridine) Ir(iii) complexes was studied by experimental methods. The system is selective for generating the anti-Markovnikov product of linear alkylarenes (61 : 39 for benzene + propylene and 98 : 2 for benzene + styrene). The reaction mechanism was found to follow a rate law with first-order dependence on benzene and catalyst, but a non-linear dependence on olefin. 13C-labelling studies with CH313CH2-Ir-Py showed that reversible [small beta]-hydride elimination is facile, but unproductive, giving exclusively saturated alkylarene products. The migration of the 13C-label from the [small alpha] to [small beta]-positions was found to be slower than the C-H activation of benzene (and thus formation of ethane and Ph-d5-Ir-Py). Kinetic analysis under steady state conditions gave a ratio of the rate constants for CH activation and [small beta]-hydride elimination (kCH: k[small beta]) of [similar]0.5. The comparable magnitude of these rates suggests a common rate determining transition state/intermediate, which has been shown previously with B3LYP density functional theory (DFT) calculations. Overall, the mechanism of hydroarylation proceeds through a series of pre-equilibrium dissociative steps involving rupture of the dinuclear species or the loss of L from Ph-Ir-L to the solvento, 16-electron species, Ph-Ir(acac-O,O)2-Sol (where Sol refers to coordinated solvent). This species then undergoes trans to cis isomerization of the acetylacetonato ligand to yield the pseudo octahedral species cis-Ph-Ir-Sol, which is followed by olefin insertion (the regioselective and rate determining step), and then activation of the C-H bond of an incoming benzene to generate the product and regenerate the catalyst.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c0gc00330a</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9262 |
ispartof | Green chemistry : an international journal and green chemistry resource : GC, 2011-01, Vol.13 (1), p.69-81 |
issn | 1463-9262 1463-9270 |
language | eng |
recordid | cdi_osti_scitechconnect_1064812 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Activation Benzene Catalysis catalysis (homogeneous), catalysis (heterogeneous), bio-inspired, hydrogen and fuel cells, materials and chemistry by design, synthesis (novel materials) Catalysts Catalysts: preparations and properties Chemistry Ethylene Exact sciences and technology General and physical chemistry INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Kinetics and mechanisms Noncondensed benzenic compounds Olefins Organic chemistry Preparations and properties Propylene Pyridines Reactivity and mechanisms Styrenes Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry |
title | Mechanism of efficient anti-Markovnikov olefin hydroarylation catalyzed by homogeneous Ir(III) complexes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A13%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20efficient%20anti-Markovnikov%20olefin%20hydroarylation%20catalyzed%20by%20homogeneous%20Ir(III)%20complexes&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=BHALLA,%20Gaurav&rft.aucorp=Center%20for%20Catalytic%20Hydrocarbon%20Functionalization%20(CCHF)&rft.date=2011-01-01&rft.volume=13&rft.issue=1&rft.spage=69&rft.epage=81&rft.pages=69-81&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/c0gc00330a&rft_dat=%3Cproquest_osti_%3E1762125673%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1762125673&rft_id=info:pmid/&rfr_iscdi=true |