Characterization of sodium ion electrochemical reaction with tin anodes: Experiment and theory

Tin anodes show a rich structure and reaction chemistry which we have investigated in detail. Upon discharge five plateaus are observed corresponding to β-Sn, an unidentified phase (Na/Sn = 0.6), an amorphous phase (Na/Sn = 1.2), a hexagonal R-3m Na5Sn2, and fully sodiated I-43d Na15Sn4. With chargi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2013, Vol.234, p.48-59
Hauptverfasser: Baggetto, Loïc, Ganesh, P., Meisner, Roberta P., Unocic, Raymond R., Jumas, Jean-Claude, Bridges, Craig A., Veith, Gabriel M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue
container_start_page 48
container_title Journal of power sources
container_volume 234
creator Baggetto, Loïc
Ganesh, P.
Meisner, Roberta P.
Unocic, Raymond R.
Jumas, Jean-Claude
Bridges, Craig A.
Veith, Gabriel M.
description Tin anodes show a rich structure and reaction chemistry which we have investigated in detail. Upon discharge five plateaus are observed corresponding to β-Sn, an unidentified phase (Na/Sn = 0.6), an amorphous phase (Na/Sn = 1.2), a hexagonal R-3m Na5Sn2, and fully sodiated I-43d Na15Sn4. With charging there are six plateaus related to the formation of Na5Sn2 followed by the formation of amorphous phases and β-Sn. Upon cycling the formation of metastable Na5Sn2 seems to be suppressed. Theoretical voltages calculated from existing crystal structures using DFT provide a good match with constant current and quasi-equilibrium measurements (GITT). Search for additional (meta)stable phases using cluster-expansion method predicts many phases lower in energy than the convex hull obtained from known structures, including the R-3m Na5Sn2 phase. The presence of multiple phases in varying lattices with similar formation energy suggests why the reaction mechanism is non-reversible. 119Sn Mössbauer spectroscopy results indicate a decrease of the isomer shift with increasing Na/Sn content, which is less pronounced than for Li–Sn compounds likely due to the lower electropositivity of Na. The electrode surface is terminated with an SEI layer rich in carbonates (Na2CO3 and Na CO3R) as evidenced by XPS. After charge at 2 V, strong evidence for the formation of oxidized Sn4+ is obtained. Subjecting the electrode to a rest after charge at 2 V reveals that aging in the electrolyte reduces the oxidized Sn4+ into Sn2+ and Sn0, and concomitantly suppresses the electrolyte decomposition represented by an anomalous discharge plateau at 1.2 V. Thereby, the catalytic decomposition of the electrolyte during discharge is caused by nanosized Sn particles covered by oxidized Sn4+ and not by pure metallic Sn. [Display omitted] ► Bulk structure of Na–Sn studied by XRD, DFT and Mössbauer spectroscopy. ► Identification of new R-3m phase of composition Na5Sn2. ► Surface chemistry probed by XPS as a function of Na content. ► Catalytic decomposition of electrolyte caused by Sn4+ and not metallic Sn.
doi_str_mv 10.1016/j.jpowsour.2013.01.083
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1063831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775313001328</els_id><sourcerecordid>1365152753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-2dad4af26f69919aebebcff0dcbf3ab767d07ff7e056dd65a9ed110d9ba1ec693</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEEkvLX0AREhIcks7EjZ1woloVirQSl_aK5dhjxatsvNjelvLrcZTSKyfLM898vW9RvEOoEZBf7Ov90T9Efwp1A8hqwBo69qLYYCdY1Yi2fVlsgImuEqJlr4s3Me4BAFHApvi5HVVQOlFwf1Ryfi69LaM37nQolx9NpFPweqSD02oqA2V4STy4NJbJzaWavaH4ubz-fcxNDjSnHDJlGsmHx_PilVVTpLdP71lx9_X6dntT7X58-7692lX6UrBUNUaZS2UbbnnfY69ooEFbC0YPlqlBcGFAWCsIWm4Mb1VPBhFMPygkzXt2Vrxf-_qYnIzaJdKj9vOct5cInHUMM_RphUY1yWPeVYVH6ZWTN1c7ucQAOmRt098v7MeVPQb_60QxyYOLmqZJzeRPUSLjLbZZXJZRvqI6-BgD2efeCHJxSO7lP4fk4pAElNmhXPjhaYaKWVsb1KxdfK5uBIqetZC5LytHWcF7R2E5kGZNxoXlPuPd_0b9BcPIrHs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1365152753</pqid></control><display><type>article</type><title>Characterization of sodium ion electrochemical reaction with tin anodes: Experiment and theory</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Baggetto, Loïc ; Ganesh, P. ; Meisner, Roberta P. ; Unocic, Raymond R. ; Jumas, Jean-Claude ; Bridges, Craig A. ; Veith, Gabriel M.</creator><creatorcontrib>Baggetto, Loïc ; Ganesh, P. ; Meisner, Roberta P. ; Unocic, Raymond R. ; Jumas, Jean-Claude ; Bridges, Craig A. ; Veith, Gabriel M. ; Center for Nanophase Materials Sciences (CNMS) ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Temperature Materials Lab. (HTML)</creatorcontrib><description>Tin anodes show a rich structure and reaction chemistry which we have investigated in detail. Upon discharge five plateaus are observed corresponding to β-Sn, an unidentified phase (Na/Sn = 0.6), an amorphous phase (Na/Sn = 1.2), a hexagonal R-3m Na5Sn2, and fully sodiated I-43d Na15Sn4. With charging there are six plateaus related to the formation of Na5Sn2 followed by the formation of amorphous phases and β-Sn. Upon cycling the formation of metastable Na5Sn2 seems to be suppressed. Theoretical voltages calculated from existing crystal structures using DFT provide a good match with constant current and quasi-equilibrium measurements (GITT). Search for additional (meta)stable phases using cluster-expansion method predicts many phases lower in energy than the convex hull obtained from known structures, including the R-3m Na5Sn2 phase. The presence of multiple phases in varying lattices with similar formation energy suggests why the reaction mechanism is non-reversible. 119Sn Mössbauer spectroscopy results indicate a decrease of the isomer shift with increasing Na/Sn content, which is less pronounced than for Li–Sn compounds likely due to the lower electropositivity of Na. The electrode surface is terminated with an SEI layer rich in carbonates (Na2CO3 and Na CO3R) as evidenced by XPS. After charge at 2 V, strong evidence for the formation of oxidized Sn4+ is obtained. Subjecting the electrode to a rest after charge at 2 V reveals that aging in the electrolyte reduces the oxidized Sn4+ into Sn2+ and Sn0, and concomitantly suppresses the electrolyte decomposition represented by an anomalous discharge plateau at 1.2 V. Thereby, the catalytic decomposition of the electrolyte during discharge is caused by nanosized Sn particles covered by oxidized Sn4+ and not by pure metallic Sn. [Display omitted] ► Bulk structure of Na–Sn studied by XRD, DFT and Mössbauer spectroscopy. ► Identification of new R-3m phase of composition Na5Sn2. ► Surface chemistry probed by XPS as a function of Na content. ► Catalytic decomposition of electrolyte caused by Sn4+ and not metallic Sn.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2013.01.083</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>119Sn Mössbauer spectroscopy ; Applied sciences ; Chemical Sciences ; Electrical engineering. Electrical power engineering ; Exact sciences and technology ; Inorganic chemistry ; Materials ; Na5Sn2 (R-3m) metastable phase (XRD-TEM-SAED) ; Na5Sn2 metastable phase (XRD) ; Phase predictions (DFT) ; sodium ion reaction ; Sodium ion reaction of Sn anodes ; Surface chemistry (XPS) ; tin (Sn) anodes</subject><ispartof>Journal of power sources, 2013, Vol.234, p.48-59</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-2dad4af26f69919aebebcff0dcbf3ab767d07ff7e056dd65a9ed110d9ba1ec693</citedby><cites>FETCH-LOGICAL-c473t-2dad4af26f69919aebebcff0dcbf3ab767d07ff7e056dd65a9ed110d9ba1ec693</cites><orcidid>0000-0002-5186-4461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775313001328$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27179350$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00813529$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1063831$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Baggetto, Loïc</creatorcontrib><creatorcontrib>Ganesh, P.</creatorcontrib><creatorcontrib>Meisner, Roberta P.</creatorcontrib><creatorcontrib>Unocic, Raymond R.</creatorcontrib><creatorcontrib>Jumas, Jean-Claude</creatorcontrib><creatorcontrib>Bridges, Craig A.</creatorcontrib><creatorcontrib>Veith, Gabriel M.</creatorcontrib><creatorcontrib>Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Temperature Materials Lab. (HTML)</creatorcontrib><title>Characterization of sodium ion electrochemical reaction with tin anodes: Experiment and theory</title><title>Journal of power sources</title><description>Tin anodes show a rich structure and reaction chemistry which we have investigated in detail. Upon discharge five plateaus are observed corresponding to β-Sn, an unidentified phase (Na/Sn = 0.6), an amorphous phase (Na/Sn = 1.2), a hexagonal R-3m Na5Sn2, and fully sodiated I-43d Na15Sn4. With charging there are six plateaus related to the formation of Na5Sn2 followed by the formation of amorphous phases and β-Sn. Upon cycling the formation of metastable Na5Sn2 seems to be suppressed. Theoretical voltages calculated from existing crystal structures using DFT provide a good match with constant current and quasi-equilibrium measurements (GITT). Search for additional (meta)stable phases using cluster-expansion method predicts many phases lower in energy than the convex hull obtained from known structures, including the R-3m Na5Sn2 phase. The presence of multiple phases in varying lattices with similar formation energy suggests why the reaction mechanism is non-reversible. 119Sn Mössbauer spectroscopy results indicate a decrease of the isomer shift with increasing Na/Sn content, which is less pronounced than for Li–Sn compounds likely due to the lower electropositivity of Na. The electrode surface is terminated with an SEI layer rich in carbonates (Na2CO3 and Na CO3R) as evidenced by XPS. After charge at 2 V, strong evidence for the formation of oxidized Sn4+ is obtained. Subjecting the electrode to a rest after charge at 2 V reveals that aging in the electrolyte reduces the oxidized Sn4+ into Sn2+ and Sn0, and concomitantly suppresses the electrolyte decomposition represented by an anomalous discharge plateau at 1.2 V. Thereby, the catalytic decomposition of the electrolyte during discharge is caused by nanosized Sn particles covered by oxidized Sn4+ and not by pure metallic Sn. [Display omitted] ► Bulk structure of Na–Sn studied by XRD, DFT and Mössbauer spectroscopy. ► Identification of new R-3m phase of composition Na5Sn2. ► Surface chemistry probed by XPS as a function of Na content. ► Catalytic decomposition of electrolyte caused by Sn4+ and not metallic Sn.</description><subject>119Sn Mössbauer spectroscopy</subject><subject>Applied sciences</subject><subject>Chemical Sciences</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Exact sciences and technology</subject><subject>Inorganic chemistry</subject><subject>Materials</subject><subject>Na5Sn2 (R-3m) metastable phase (XRD-TEM-SAED)</subject><subject>Na5Sn2 metastable phase (XRD)</subject><subject>Phase predictions (DFT)</subject><subject>sodium ion reaction</subject><subject>Sodium ion reaction of Sn anodes</subject><subject>Surface chemistry (XPS)</subject><subject>tin (Sn) anodes</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhiMEEkvLX0AREhIcks7EjZ1woloVirQSl_aK5dhjxatsvNjelvLrcZTSKyfLM898vW9RvEOoEZBf7Ov90T9Efwp1A8hqwBo69qLYYCdY1Yi2fVlsgImuEqJlr4s3Me4BAFHApvi5HVVQOlFwf1Ryfi69LaM37nQolx9NpFPweqSD02oqA2V4STy4NJbJzaWavaH4ubz-fcxNDjSnHDJlGsmHx_PilVVTpLdP71lx9_X6dntT7X58-7692lX6UrBUNUaZS2UbbnnfY69ooEFbC0YPlqlBcGFAWCsIWm4Mb1VPBhFMPygkzXt2Vrxf-_qYnIzaJdKj9vOct5cInHUMM_RphUY1yWPeVYVH6ZWTN1c7ucQAOmRt098v7MeVPQb_60QxyYOLmqZJzeRPUSLjLbZZXJZRvqI6-BgD2efeCHJxSO7lP4fk4pAElNmhXPjhaYaKWVsb1KxdfK5uBIqetZC5LytHWcF7R2E5kGZNxoXlPuPd_0b9BcPIrHs</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Baggetto, Loïc</creator><creator>Ganesh, P.</creator><creator>Meisner, Roberta P.</creator><creator>Unocic, Raymond R.</creator><creator>Jumas, Jean-Claude</creator><creator>Bridges, Craig A.</creator><creator>Veith, Gabriel M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5186-4461</orcidid></search><sort><creationdate>2013</creationdate><title>Characterization of sodium ion electrochemical reaction with tin anodes: Experiment and theory</title><author>Baggetto, Loïc ; Ganesh, P. ; Meisner, Roberta P. ; Unocic, Raymond R. ; Jumas, Jean-Claude ; Bridges, Craig A. ; Veith, Gabriel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-2dad4af26f69919aebebcff0dcbf3ab767d07ff7e056dd65a9ed110d9ba1ec693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>119Sn Mössbauer spectroscopy</topic><topic>Applied sciences</topic><topic>Chemical Sciences</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Exact sciences and technology</topic><topic>Inorganic chemistry</topic><topic>Materials</topic><topic>Na5Sn2 (R-3m) metastable phase (XRD-TEM-SAED)</topic><topic>Na5Sn2 metastable phase (XRD)</topic><topic>Phase predictions (DFT)</topic><topic>sodium ion reaction</topic><topic>Sodium ion reaction of Sn anodes</topic><topic>Surface chemistry (XPS)</topic><topic>tin (Sn) anodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baggetto, Loïc</creatorcontrib><creatorcontrib>Ganesh, P.</creatorcontrib><creatorcontrib>Meisner, Roberta P.</creatorcontrib><creatorcontrib>Unocic, Raymond R.</creatorcontrib><creatorcontrib>Jumas, Jean-Claude</creatorcontrib><creatorcontrib>Bridges, Craig A.</creatorcontrib><creatorcontrib>Veith, Gabriel M.</creatorcontrib><creatorcontrib>Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Temperature Materials Lab. (HTML)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baggetto, Loïc</au><au>Ganesh, P.</au><au>Meisner, Roberta P.</au><au>Unocic, Raymond R.</au><au>Jumas, Jean-Claude</au><au>Bridges, Craig A.</au><au>Veith, Gabriel M.</au><aucorp>Center for Nanophase Materials Sciences (CNMS)</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Temperature Materials Lab. (HTML)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of sodium ion electrochemical reaction with tin anodes: Experiment and theory</atitle><jtitle>Journal of power sources</jtitle><date>2013</date><risdate>2013</risdate><volume>234</volume><spage>48</spage><epage>59</epage><pages>48-59</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Tin anodes show a rich structure and reaction chemistry which we have investigated in detail. Upon discharge five plateaus are observed corresponding to β-Sn, an unidentified phase (Na/Sn = 0.6), an amorphous phase (Na/Sn = 1.2), a hexagonal R-3m Na5Sn2, and fully sodiated I-43d Na15Sn4. With charging there are six plateaus related to the formation of Na5Sn2 followed by the formation of amorphous phases and β-Sn. Upon cycling the formation of metastable Na5Sn2 seems to be suppressed. Theoretical voltages calculated from existing crystal structures using DFT provide a good match with constant current and quasi-equilibrium measurements (GITT). Search for additional (meta)stable phases using cluster-expansion method predicts many phases lower in energy than the convex hull obtained from known structures, including the R-3m Na5Sn2 phase. The presence of multiple phases in varying lattices with similar formation energy suggests why the reaction mechanism is non-reversible. 119Sn Mössbauer spectroscopy results indicate a decrease of the isomer shift with increasing Na/Sn content, which is less pronounced than for Li–Sn compounds likely due to the lower electropositivity of Na. The electrode surface is terminated with an SEI layer rich in carbonates (Na2CO3 and Na CO3R) as evidenced by XPS. After charge at 2 V, strong evidence for the formation of oxidized Sn4+ is obtained. Subjecting the electrode to a rest after charge at 2 V reveals that aging in the electrolyte reduces the oxidized Sn4+ into Sn2+ and Sn0, and concomitantly suppresses the electrolyte decomposition represented by an anomalous discharge plateau at 1.2 V. Thereby, the catalytic decomposition of the electrolyte during discharge is caused by nanosized Sn particles covered by oxidized Sn4+ and not by pure metallic Sn. [Display omitted] ► Bulk structure of Na–Sn studied by XRD, DFT and Mössbauer spectroscopy. ► Identification of new R-3m phase of composition Na5Sn2. ► Surface chemistry probed by XPS as a function of Na content. ► Catalytic decomposition of electrolyte caused by Sn4+ and not metallic Sn.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2013.01.083</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5186-4461</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2013, Vol.234, p.48-59
issn 0378-7753
1873-2755
language eng
recordid cdi_osti_scitechconnect_1063831
source Elsevier ScienceDirect Journals Complete
subjects 119Sn Mössbauer spectroscopy
Applied sciences
Chemical Sciences
Electrical engineering. Electrical power engineering
Exact sciences and technology
Inorganic chemistry
Materials
Na5Sn2 (R-3m) metastable phase (XRD-TEM-SAED)
Na5Sn2 metastable phase (XRD)
Phase predictions (DFT)
sodium ion reaction
Sodium ion reaction of Sn anodes
Surface chemistry (XPS)
tin (Sn) anodes
title Characterization of sodium ion electrochemical reaction with tin anodes: Experiment and theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A18%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20sodium%20ion%20electrochemical%20reaction%20with%20tin%20anodes:%20Experiment%20and%20theory&rft.jtitle=Journal%20of%20power%20sources&rft.au=Baggetto,%20Lo%C3%AFc&rft.aucorp=Center%20for%20Nanophase%20Materials%20Sciences%20(CNMS)&rft.date=2013&rft.volume=234&rft.spage=48&rft.epage=59&rft.pages=48-59&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2013.01.083&rft_dat=%3Cproquest_osti_%3E1365152753%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1365152753&rft_id=info:pmid/&rft_els_id=S0378775313001328&rfr_iscdi=true