Active Site Loop Dynamics of a Class IIa Fructose 1,6-Bisphosphate Aldolase from Mycobacterium tuberculosis

Class II fructose 1,6-bisphosphate aldolases (FBAs, EC 4.1.2.13) comprise one of two families of aldolases. Instead of forming a Schiff base intermediate using an ε-amino group of a lysine side chain, class II FBAs utilize Zn(II) to stabilize a proposed hydroxyenolate intermediate (HEI) in the rever...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2013-02, Vol.52 (5), p.912-925
Hauptverfasser: Pegan, Scott D, Rukseree, Kamolchanok, Capodagli, Glenn C, Baker, Erica A, Krasnykh, Olga, Franzblau, Scott G, Mesecar, Andrew D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 925
container_issue 5
container_start_page 912
container_title Biochemistry (Easton)
container_volume 52
creator Pegan, Scott D
Rukseree, Kamolchanok
Capodagli, Glenn C
Baker, Erica A
Krasnykh, Olga
Franzblau, Scott G
Mesecar, Andrew D
description Class II fructose 1,6-bisphosphate aldolases (FBAs, EC 4.1.2.13) comprise one of two families of aldolases. Instead of forming a Schiff base intermediate using an ε-amino group of a lysine side chain, class II FBAs utilize Zn(II) to stabilize a proposed hydroxyenolate intermediate (HEI) in the reversible cleavage of fructose 1,6-bisphosphate, forming glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP). As class II FBAs have been shown to be essential in pathogenic bacteria, focus has been placed on these enzymes as potential antibacterial targets. Although structural studies of class II FBAs from Mycobacterium tuberculosis (MtFBA), other bacteria, and protozoa have been reported, the structure of the active site loop responsible for catalyzing the protonation–deprotonation steps of the reaction for class II FBAs has not yet been observed. We therefore utilized the potent class II FBA inhibitor phosphoglycolohydroxamate (PGH) as a mimic of the HEI- and DHAP-bound form of the enzyme and determined the X-ray structure of the MtFBA–PGH complex to 1.58 Å. Remarkably, we are able to observe well-defined electron density for the previously elusive active site loop of MtFBA trapped in a catalytically competent orientation. Utilization of this structural information and site-directed mutagenesis and kinetic studies conducted on a series of residues within the active site loop revealed that E169 facilitates a water-mediated deprotonation–protonation step of the MtFBA reaction mechanism. Also, solvent isotope effects on MtFBA and catalytically relevant mutants were used to probe the effect of loop flexibility on catalytic efficiency. Additionally, we also reveal the structure of MtFBA in its holoenzyme form.
doi_str_mv 10.1021/bi300928u
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1062432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1534812610</sourcerecordid><originalsourceid>FETCH-LOGICAL-a476t-b633743a19fa6163264a5e9c6b37244f2dd25dc5f9bb92e54e8353b8436aee183</originalsourceid><addsrcrecordid>eNpt0d9rFDEQB_AgFntWH_wHJAiCgqv5tbnN43lae3DFB_V5SbKzNHV3c80khfvvjVztkw9hCHzmCzNDyCvOPnIm-CcXJGNGdOUJWfFWsEYZ0z4lK8aYboTR7Jw8R7ytX8XW6hk5F1KYTgixIr83Pod7oD9CBrqP8UC_HBc7B480jtTS7WQR6W5n6WUqPkcEyj_o5nPAw02sz9a2zTTEyoCOKc70-uijsz5DCmWmuThIvkwRA74gZ6OdEF4-1Avy6_Lrz-1Vs__-bbfd7Bur1jo3Tku5VtJyM1rNtRRa2RaM106uhVKjGAbRDr4djXNGQKugk610nZLaAvBOXpA3p9yIOfTo62j-xsdlAZ97zrRQUlT07oQOKd4VwNzPAT1Mk10gFux5K1XHheas0vcn6lNETDD2hxRmm441rP97gP7xANW-fogtbobhUf7beAVvT8B67G9jSUtdxX-C_gCkG4sX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1534812610</pqid></control><display><type>article</type><title>Active Site Loop Dynamics of a Class IIa Fructose 1,6-Bisphosphate Aldolase from Mycobacterium tuberculosis</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Pegan, Scott D ; Rukseree, Kamolchanok ; Capodagli, Glenn C ; Baker, Erica A ; Krasnykh, Olga ; Franzblau, Scott G ; Mesecar, Andrew D</creator><creatorcontrib>Pegan, Scott D ; Rukseree, Kamolchanok ; Capodagli, Glenn C ; Baker, Erica A ; Krasnykh, Olga ; Franzblau, Scott G ; Mesecar, Andrew D ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Class II fructose 1,6-bisphosphate aldolases (FBAs, EC 4.1.2.13) comprise one of two families of aldolases. Instead of forming a Schiff base intermediate using an ε-amino group of a lysine side chain, class II FBAs utilize Zn(II) to stabilize a proposed hydroxyenolate intermediate (HEI) in the reversible cleavage of fructose 1,6-bisphosphate, forming glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP). As class II FBAs have been shown to be essential in pathogenic bacteria, focus has been placed on these enzymes as potential antibacterial targets. Although structural studies of class II FBAs from Mycobacterium tuberculosis (MtFBA), other bacteria, and protozoa have been reported, the structure of the active site loop responsible for catalyzing the protonation–deprotonation steps of the reaction for class II FBAs has not yet been observed. We therefore utilized the potent class II FBA inhibitor phosphoglycolohydroxamate (PGH) as a mimic of the HEI- and DHAP-bound form of the enzyme and determined the X-ray structure of the MtFBA–PGH complex to 1.58 Å. Remarkably, we are able to observe well-defined electron density for the previously elusive active site loop of MtFBA trapped in a catalytically competent orientation. Utilization of this structural information and site-directed mutagenesis and kinetic studies conducted on a series of residues within the active site loop revealed that E169 facilitates a water-mediated deprotonation–protonation step of the MtFBA reaction mechanism. Also, solvent isotope effects on MtFBA and catalytically relevant mutants were used to probe the effect of loop flexibility on catalytic efficiency. Additionally, we also reveal the structure of MtFBA in its holoenzyme form.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi300928u</identifier><identifier>PMID: 23298222</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Sequence ; Catalytic Domain ; Dihydroxyacetone Phosphate - metabolism ; Fructose-Bisphosphate Aldolase - antagonists &amp; inhibitors ; Fructose-Bisphosphate Aldolase - chemistry ; Fructose-Bisphosphate Aldolase - genetics ; Fructose-Bisphosphate Aldolase - metabolism ; Hydroxamic Acids - metabolism ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - chemistry ; Mycobacterium tuberculosis - enzymology ; Mycobacterium tuberculosis - genetics ; Mycobacterium tuberculosis - metabolism ; Protein Binding ; Sequence Alignment ; Substrate Specificity</subject><ispartof>Biochemistry (Easton), 2013-02, Vol.52 (5), p.912-925</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a476t-b633743a19fa6163264a5e9c6b37244f2dd25dc5f9bb92e54e8353b8436aee183</citedby><cites>FETCH-LOGICAL-a476t-b633743a19fa6163264a5e9c6b37244f2dd25dc5f9bb92e54e8353b8436aee183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi300928u$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi300928u$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23298222$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1062432$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pegan, Scott D</creatorcontrib><creatorcontrib>Rukseree, Kamolchanok</creatorcontrib><creatorcontrib>Capodagli, Glenn C</creatorcontrib><creatorcontrib>Baker, Erica A</creatorcontrib><creatorcontrib>Krasnykh, Olga</creatorcontrib><creatorcontrib>Franzblau, Scott G</creatorcontrib><creatorcontrib>Mesecar, Andrew D</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Active Site Loop Dynamics of a Class IIa Fructose 1,6-Bisphosphate Aldolase from Mycobacterium tuberculosis</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Class II fructose 1,6-bisphosphate aldolases (FBAs, EC 4.1.2.13) comprise one of two families of aldolases. Instead of forming a Schiff base intermediate using an ε-amino group of a lysine side chain, class II FBAs utilize Zn(II) to stabilize a proposed hydroxyenolate intermediate (HEI) in the reversible cleavage of fructose 1,6-bisphosphate, forming glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP). As class II FBAs have been shown to be essential in pathogenic bacteria, focus has been placed on these enzymes as potential antibacterial targets. Although structural studies of class II FBAs from Mycobacterium tuberculosis (MtFBA), other bacteria, and protozoa have been reported, the structure of the active site loop responsible for catalyzing the protonation–deprotonation steps of the reaction for class II FBAs has not yet been observed. We therefore utilized the potent class II FBA inhibitor phosphoglycolohydroxamate (PGH) as a mimic of the HEI- and DHAP-bound form of the enzyme and determined the X-ray structure of the MtFBA–PGH complex to 1.58 Å. Remarkably, we are able to observe well-defined electron density for the previously elusive active site loop of MtFBA trapped in a catalytically competent orientation. Utilization of this structural information and site-directed mutagenesis and kinetic studies conducted on a series of residues within the active site loop revealed that E169 facilitates a water-mediated deprotonation–protonation step of the MtFBA reaction mechanism. Also, solvent isotope effects on MtFBA and catalytically relevant mutants were used to probe the effect of loop flexibility on catalytic efficiency. Additionally, we also reveal the structure of MtFBA in its holoenzyme form.</description><subject>Amino Acid Sequence</subject><subject>Catalytic Domain</subject><subject>Dihydroxyacetone Phosphate - metabolism</subject><subject>Fructose-Bisphosphate Aldolase - antagonists &amp; inhibitors</subject><subject>Fructose-Bisphosphate Aldolase - chemistry</subject><subject>Fructose-Bisphosphate Aldolase - genetics</subject><subject>Fructose-Bisphosphate Aldolase - metabolism</subject><subject>Hydroxamic Acids - metabolism</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - chemistry</subject><subject>Mycobacterium tuberculosis - enzymology</subject><subject>Mycobacterium tuberculosis - genetics</subject><subject>Mycobacterium tuberculosis - metabolism</subject><subject>Protein Binding</subject><subject>Sequence Alignment</subject><subject>Substrate Specificity</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0d9rFDEQB_AgFntWH_wHJAiCgqv5tbnN43lae3DFB_V5SbKzNHV3c80khfvvjVztkw9hCHzmCzNDyCvOPnIm-CcXJGNGdOUJWfFWsEYZ0z4lK8aYboTR7Jw8R7ytX8XW6hk5F1KYTgixIr83Pod7oD9CBrqP8UC_HBc7B480jtTS7WQR6W5n6WUqPkcEyj_o5nPAw02sz9a2zTTEyoCOKc70-uijsz5DCmWmuThIvkwRA74gZ6OdEF4-1Avy6_Lrz-1Vs__-bbfd7Bur1jo3Tku5VtJyM1rNtRRa2RaM106uhVKjGAbRDr4djXNGQKugk610nZLaAvBOXpA3p9yIOfTo62j-xsdlAZ97zrRQUlT07oQOKd4VwNzPAT1Mk10gFux5K1XHheas0vcn6lNETDD2hxRmm441rP97gP7xANW-fogtbobhUf7beAVvT8B67G9jSUtdxX-C_gCkG4sX</recordid><startdate>20130205</startdate><enddate>20130205</enddate><creator>Pegan, Scott D</creator><creator>Rukseree, Kamolchanok</creator><creator>Capodagli, Glenn C</creator><creator>Baker, Erica A</creator><creator>Krasnykh, Olga</creator><creator>Franzblau, Scott G</creator><creator>Mesecar, Andrew D</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>M7N</scope><scope>OTOTI</scope></search><sort><creationdate>20130205</creationdate><title>Active Site Loop Dynamics of a Class IIa Fructose 1,6-Bisphosphate Aldolase from Mycobacterium tuberculosis</title><author>Pegan, Scott D ; Rukseree, Kamolchanok ; Capodagli, Glenn C ; Baker, Erica A ; Krasnykh, Olga ; Franzblau, Scott G ; Mesecar, Andrew D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a476t-b633743a19fa6163264a5e9c6b37244f2dd25dc5f9bb92e54e8353b8436aee183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Sequence</topic><topic>Catalytic Domain</topic><topic>Dihydroxyacetone Phosphate - metabolism</topic><topic>Fructose-Bisphosphate Aldolase - antagonists &amp; inhibitors</topic><topic>Fructose-Bisphosphate Aldolase - chemistry</topic><topic>Fructose-Bisphosphate Aldolase - genetics</topic><topic>Fructose-Bisphosphate Aldolase - metabolism</topic><topic>Hydroxamic Acids - metabolism</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - chemistry</topic><topic>Mycobacterium tuberculosis - enzymology</topic><topic>Mycobacterium tuberculosis - genetics</topic><topic>Mycobacterium tuberculosis - metabolism</topic><topic>Protein Binding</topic><topic>Sequence Alignment</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pegan, Scott D</creatorcontrib><creatorcontrib>Rukseree, Kamolchanok</creatorcontrib><creatorcontrib>Capodagli, Glenn C</creatorcontrib><creatorcontrib>Baker, Erica A</creatorcontrib><creatorcontrib>Krasnykh, Olga</creatorcontrib><creatorcontrib>Franzblau, Scott G</creatorcontrib><creatorcontrib>Mesecar, Andrew D</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>OSTI.GOV</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pegan, Scott D</au><au>Rukseree, Kamolchanok</au><au>Capodagli, Glenn C</au><au>Baker, Erica A</au><au>Krasnykh, Olga</au><au>Franzblau, Scott G</au><au>Mesecar, Andrew D</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active Site Loop Dynamics of a Class IIa Fructose 1,6-Bisphosphate Aldolase from Mycobacterium tuberculosis</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2013-02-05</date><risdate>2013</risdate><volume>52</volume><issue>5</issue><spage>912</spage><epage>925</epage><pages>912-925</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Class II fructose 1,6-bisphosphate aldolases (FBAs, EC 4.1.2.13) comprise one of two families of aldolases. Instead of forming a Schiff base intermediate using an ε-amino group of a lysine side chain, class II FBAs utilize Zn(II) to stabilize a proposed hydroxyenolate intermediate (HEI) in the reversible cleavage of fructose 1,6-bisphosphate, forming glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP). As class II FBAs have been shown to be essential in pathogenic bacteria, focus has been placed on these enzymes as potential antibacterial targets. Although structural studies of class II FBAs from Mycobacterium tuberculosis (MtFBA), other bacteria, and protozoa have been reported, the structure of the active site loop responsible for catalyzing the protonation–deprotonation steps of the reaction for class II FBAs has not yet been observed. We therefore utilized the potent class II FBA inhibitor phosphoglycolohydroxamate (PGH) as a mimic of the HEI- and DHAP-bound form of the enzyme and determined the X-ray structure of the MtFBA–PGH complex to 1.58 Å. Remarkably, we are able to observe well-defined electron density for the previously elusive active site loop of MtFBA trapped in a catalytically competent orientation. Utilization of this structural information and site-directed mutagenesis and kinetic studies conducted on a series of residues within the active site loop revealed that E169 facilitates a water-mediated deprotonation–protonation step of the MtFBA reaction mechanism. Also, solvent isotope effects on MtFBA and catalytically relevant mutants were used to probe the effect of loop flexibility on catalytic efficiency. Additionally, we also reveal the structure of MtFBA in its holoenzyme form.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23298222</pmid><doi>10.1021/bi300928u</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2013-02, Vol.52 (5), p.912-925
issn 0006-2960
1520-4995
language eng
recordid cdi_osti_scitechconnect_1062432
source MEDLINE; American Chemical Society Journals
subjects Amino Acid Sequence
Catalytic Domain
Dihydroxyacetone Phosphate - metabolism
Fructose-Bisphosphate Aldolase - antagonists & inhibitors
Fructose-Bisphosphate Aldolase - chemistry
Fructose-Bisphosphate Aldolase - genetics
Fructose-Bisphosphate Aldolase - metabolism
Hydroxamic Acids - metabolism
Kinetics
Models, Molecular
Molecular Sequence Data
Mutagenesis, Site-Directed
Mycobacterium tuberculosis
Mycobacterium tuberculosis - chemistry
Mycobacterium tuberculosis - enzymology
Mycobacterium tuberculosis - genetics
Mycobacterium tuberculosis - metabolism
Protein Binding
Sequence Alignment
Substrate Specificity
title Active Site Loop Dynamics of a Class IIa Fructose 1,6-Bisphosphate Aldolase from Mycobacterium tuberculosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A16%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20Site%20Loop%20Dynamics%20of%20a%20Class%20IIa%20Fructose%201,6-Bisphosphate%20Aldolase%20from%20Mycobacterium%20tuberculosis&rft.jtitle=Biochemistry%20(Easton)&rft.au=Pegan,%20Scott%20D&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2013-02-05&rft.volume=52&rft.issue=5&rft.spage=912&rft.epage=925&rft.pages=912-925&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi300928u&rft_dat=%3Cproquest_osti_%3E1534812610%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1534812610&rft_id=info:pmid/23298222&rfr_iscdi=true