Nanoscale Perturbations of Room Temperature Ionic Liquid Structure at Charged and Uncharged Interfaces

The nanoscale interactions of room temperature ionic liquids (RTILs) at uncharged (graphene) and charged (muscovite mica) solid surfaces were evaluated with high resolution X-ray interface scattering and fully atomistic molecular dynamics simulations. At uncharged graphene surfaces, the imidazolium-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2012-11, Vol.6 (11), p.9818-9827
Hauptverfasser: Zhou, Hua, Rouha, Michael, Feng, Guang, Lee, Sang Soo, Docherty, Hugh, Fenter, Paul, Cummings, Peter T, Fulvio, Pasquale F, Dai, Sheng, McDonough, John, Presser, Volker, Gogotsi, Yury
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9827
container_issue 11
container_start_page 9818
container_title ACS nano
container_volume 6
creator Zhou, Hua
Rouha, Michael
Feng, Guang
Lee, Sang Soo
Docherty, Hugh
Fenter, Paul
Cummings, Peter T
Fulvio, Pasquale F
Dai, Sheng
McDonough, John
Presser, Volker
Gogotsi, Yury
description The nanoscale interactions of room temperature ionic liquids (RTILs) at uncharged (graphene) and charged (muscovite mica) solid surfaces were evaluated with high resolution X-ray interface scattering and fully atomistic molecular dynamics simulations. At uncharged graphene surfaces, the imidazolium-based RTIL ([bmim+][Tf2N–]) exhibits a mixed cation/anion layering with a strong interfacial densification of the first RTIL layer. The first layer density observed via experiment is larger than that predicted by simulation and the apparent discrepancy can be understood with the inclusion of, dominantly, image charge and π-stacking interactions between the RTIL and the graphene sheet. In contrast, the RTIL structure adjacent to the charged mica surface exhibits an alternating cation–anion layering extending 3.5 nm into the bulk fluid. The associated charge density profile demonstrates a pronounced charge overscreening (i.e., excess first-layer counterions with respect to the adjacent surface charge), highlighting the critical role of charge-induced nanoscale correlations of the RTIL. These observations confirm key aspects of a predicted electric double layer structure from an analytical Landau–Ginzburg-type continuum theory incorporating ion correlation effects, and provide a new baseline for understanding the fundamental nanoscale response of RTILs at charged interfaces.
doi_str_mv 10.1021/nn303355b
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1061579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1220573043</sourcerecordid><originalsourceid>FETCH-LOGICAL-a441t-8c81a5ba2753df6bee09c470c481f4e485a0b599712c4d033cd9ef06305adb4a3</originalsourceid><addsrcrecordid>eNqF0ctq3DAUBmARUppLu8gLFBEopItpjyzJl2UZehkY2tAkkJ05Pj5uHMbSRJIXffsqnemsCl3p9vEL6RfiQsF7BYX64JwGra3tjsSpanS5gLq8Pz7MrToRZzE-AtiqrsqX4qTQ0BQG4FQM39D5SLhhec0hzaHDNHoXpR_kD-8necvTlgPmE5Yr70aS6_FpHnt5k8JMf7YxyeUDhp_cS3S9vHO0X61c4jAgcXwlXgy4ifx6P56Lu8-fbpdfF-vvX1bLj-sFGqPSoqZaoe2wqKzuh7JjhoZMBWRqNRg2tUXobNNUqiDT5zdT3_AApQaLfWdQn4vLXa6PaWwjjYnpgbxzTKlVUCpbNRld7dA2-KeZY2qnMRJvNujYz7FVVVmAzbr-Py2yrDQYnem7HaXgYww8tNswThh-5Xvb55raQ03ZvtnHzt3E_UH-7SWDtzuAFNtHPweXf-0fQb8B71SYlg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1220573043</pqid></control><display><type>article</type><title>Nanoscale Perturbations of Room Temperature Ionic Liquid Structure at Charged and Uncharged Interfaces</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Zhou, Hua ; Rouha, Michael ; Feng, Guang ; Lee, Sang Soo ; Docherty, Hugh ; Fenter, Paul ; Cummings, Peter T ; Fulvio, Pasquale F ; Dai, Sheng ; McDonough, John ; Presser, Volker ; Gogotsi, Yury</creator><creatorcontrib>Zhou, Hua ; Rouha, Michael ; Feng, Guang ; Lee, Sang Soo ; Docherty, Hugh ; Fenter, Paul ; Cummings, Peter T ; Fulvio, Pasquale F ; Dai, Sheng ; McDonough, John ; Presser, Volker ; Gogotsi, Yury ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>The nanoscale interactions of room temperature ionic liquids (RTILs) at uncharged (graphene) and charged (muscovite mica) solid surfaces were evaluated with high resolution X-ray interface scattering and fully atomistic molecular dynamics simulations. At uncharged graphene surfaces, the imidazolium-based RTIL ([bmim+][Tf2N–]) exhibits a mixed cation/anion layering with a strong interfacial densification of the first RTIL layer. The first layer density observed via experiment is larger than that predicted by simulation and the apparent discrepancy can be understood with the inclusion of, dominantly, image charge and π-stacking interactions between the RTIL and the graphene sheet. In contrast, the RTIL structure adjacent to the charged mica surface exhibits an alternating cation–anion layering extending 3.5 nm into the bulk fluid. The associated charge density profile demonstrates a pronounced charge overscreening (i.e., excess first-layer counterions with respect to the adjacent surface charge), highlighting the critical role of charge-induced nanoscale correlations of the RTIL. These observations confirm key aspects of a predicted electric double layer structure from an analytical Landau–Ginzburg-type continuum theory incorporating ion correlation effects, and provide a new baseline for understanding the fundamental nanoscale response of RTILs at charged interfaces.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn303355b</identifier><identifier>PMID: 23092400</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cations ; Charge density ; Charging ; Computer Simulation ; Electromagnetic Fields ; Graphene ; Ionic liquids ; Ionic Liquids - chemistry ; Layering ; Materials Testing ; Mica ; Models, Chemical ; Molecular Conformation ; Molecular Dynamics Simulation ; Nanostructure ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Particle Size ; Phase Transition ; Simulation ; Surface Properties ; Temperature</subject><ispartof>ACS nano, 2012-11, Vol.6 (11), p.9818-9827</ispartof><rights>Copyright © 2012 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a441t-8c81a5ba2753df6bee09c470c481f4e485a0b599712c4d033cd9ef06305adb4a3</citedby><cites>FETCH-LOGICAL-a441t-8c81a5ba2753df6bee09c470c481f4e485a0b599712c4d033cd9ef06305adb4a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn303355b$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn303355b$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23092400$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1061579$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Rouha, Michael</creatorcontrib><creatorcontrib>Feng, Guang</creatorcontrib><creatorcontrib>Lee, Sang Soo</creatorcontrib><creatorcontrib>Docherty, Hugh</creatorcontrib><creatorcontrib>Fenter, Paul</creatorcontrib><creatorcontrib>Cummings, Peter T</creatorcontrib><creatorcontrib>Fulvio, Pasquale F</creatorcontrib><creatorcontrib>Dai, Sheng</creatorcontrib><creatorcontrib>McDonough, John</creatorcontrib><creatorcontrib>Presser, Volker</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Nanoscale Perturbations of Room Temperature Ionic Liquid Structure at Charged and Uncharged Interfaces</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The nanoscale interactions of room temperature ionic liquids (RTILs) at uncharged (graphene) and charged (muscovite mica) solid surfaces were evaluated with high resolution X-ray interface scattering and fully atomistic molecular dynamics simulations. At uncharged graphene surfaces, the imidazolium-based RTIL ([bmim+][Tf2N–]) exhibits a mixed cation/anion layering with a strong interfacial densification of the first RTIL layer. The first layer density observed via experiment is larger than that predicted by simulation and the apparent discrepancy can be understood with the inclusion of, dominantly, image charge and π-stacking interactions between the RTIL and the graphene sheet. In contrast, the RTIL structure adjacent to the charged mica surface exhibits an alternating cation–anion layering extending 3.5 nm into the bulk fluid. The associated charge density profile demonstrates a pronounced charge overscreening (i.e., excess first-layer counterions with respect to the adjacent surface charge), highlighting the critical role of charge-induced nanoscale correlations of the RTIL. These observations confirm key aspects of a predicted electric double layer structure from an analytical Landau–Ginzburg-type continuum theory incorporating ion correlation effects, and provide a new baseline for understanding the fundamental nanoscale response of RTILs at charged interfaces.</description><subject>Cations</subject><subject>Charge density</subject><subject>Charging</subject><subject>Computer Simulation</subject><subject>Electromagnetic Fields</subject><subject>Graphene</subject><subject>Ionic liquids</subject><subject>Ionic Liquids - chemistry</subject><subject>Layering</subject><subject>Materials Testing</subject><subject>Mica</subject><subject>Models, Chemical</subject><subject>Molecular Conformation</subject><subject>Molecular Dynamics Simulation</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Particle Size</subject><subject>Phase Transition</subject><subject>Simulation</subject><subject>Surface Properties</subject><subject>Temperature</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0ctq3DAUBmARUppLu8gLFBEopItpjyzJl2UZehkY2tAkkJ05Pj5uHMbSRJIXffsqnemsCl3p9vEL6RfiQsF7BYX64JwGra3tjsSpanS5gLq8Pz7MrToRZzE-AtiqrsqX4qTQ0BQG4FQM39D5SLhhec0hzaHDNHoXpR_kD-8necvTlgPmE5Yr70aS6_FpHnt5k8JMf7YxyeUDhp_cS3S9vHO0X61c4jAgcXwlXgy4ifx6P56Lu8-fbpdfF-vvX1bLj-sFGqPSoqZaoe2wqKzuh7JjhoZMBWRqNRg2tUXobNNUqiDT5zdT3_AApQaLfWdQn4vLXa6PaWwjjYnpgbxzTKlVUCpbNRld7dA2-KeZY2qnMRJvNujYz7FVVVmAzbr-Py2yrDQYnem7HaXgYww8tNswThh-5Xvb55raQ03ZvtnHzt3E_UH-7SWDtzuAFNtHPweXf-0fQb8B71SYlg</recordid><startdate>20121127</startdate><enddate>20121127</enddate><creator>Zhou, Hua</creator><creator>Rouha, Michael</creator><creator>Feng, Guang</creator><creator>Lee, Sang Soo</creator><creator>Docherty, Hugh</creator><creator>Fenter, Paul</creator><creator>Cummings, Peter T</creator><creator>Fulvio, Pasquale F</creator><creator>Dai, Sheng</creator><creator>McDonough, John</creator><creator>Presser, Volker</creator><creator>Gogotsi, Yury</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20121127</creationdate><title>Nanoscale Perturbations of Room Temperature Ionic Liquid Structure at Charged and Uncharged Interfaces</title><author>Zhou, Hua ; Rouha, Michael ; Feng, Guang ; Lee, Sang Soo ; Docherty, Hugh ; Fenter, Paul ; Cummings, Peter T ; Fulvio, Pasquale F ; Dai, Sheng ; McDonough, John ; Presser, Volker ; Gogotsi, Yury</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a441t-8c81a5ba2753df6bee09c470c481f4e485a0b599712c4d033cd9ef06305adb4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cations</topic><topic>Charge density</topic><topic>Charging</topic><topic>Computer Simulation</topic><topic>Electromagnetic Fields</topic><topic>Graphene</topic><topic>Ionic liquids</topic><topic>Ionic Liquids - chemistry</topic><topic>Layering</topic><topic>Materials Testing</topic><topic>Mica</topic><topic>Models, Chemical</topic><topic>Molecular Conformation</topic><topic>Molecular Dynamics Simulation</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Particle Size</topic><topic>Phase Transition</topic><topic>Simulation</topic><topic>Surface Properties</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Hua</creatorcontrib><creatorcontrib>Rouha, Michael</creatorcontrib><creatorcontrib>Feng, Guang</creatorcontrib><creatorcontrib>Lee, Sang Soo</creatorcontrib><creatorcontrib>Docherty, Hugh</creatorcontrib><creatorcontrib>Fenter, Paul</creatorcontrib><creatorcontrib>Cummings, Peter T</creatorcontrib><creatorcontrib>Fulvio, Pasquale F</creatorcontrib><creatorcontrib>Dai, Sheng</creatorcontrib><creatorcontrib>McDonough, John</creatorcontrib><creatorcontrib>Presser, Volker</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Hua</au><au>Rouha, Michael</au><au>Feng, Guang</au><au>Lee, Sang Soo</au><au>Docherty, Hugh</au><au>Fenter, Paul</au><au>Cummings, Peter T</au><au>Fulvio, Pasquale F</au><au>Dai, Sheng</au><au>McDonough, John</au><au>Presser, Volker</au><au>Gogotsi, Yury</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoscale Perturbations of Room Temperature Ionic Liquid Structure at Charged and Uncharged Interfaces</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2012-11-27</date><risdate>2012</risdate><volume>6</volume><issue>11</issue><spage>9818</spage><epage>9827</epage><pages>9818-9827</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The nanoscale interactions of room temperature ionic liquids (RTILs) at uncharged (graphene) and charged (muscovite mica) solid surfaces were evaluated with high resolution X-ray interface scattering and fully atomistic molecular dynamics simulations. At uncharged graphene surfaces, the imidazolium-based RTIL ([bmim+][Tf2N–]) exhibits a mixed cation/anion layering with a strong interfacial densification of the first RTIL layer. The first layer density observed via experiment is larger than that predicted by simulation and the apparent discrepancy can be understood with the inclusion of, dominantly, image charge and π-stacking interactions between the RTIL and the graphene sheet. In contrast, the RTIL structure adjacent to the charged mica surface exhibits an alternating cation–anion layering extending 3.5 nm into the bulk fluid. The associated charge density profile demonstrates a pronounced charge overscreening (i.e., excess first-layer counterions with respect to the adjacent surface charge), highlighting the critical role of charge-induced nanoscale correlations of the RTIL. These observations confirm key aspects of a predicted electric double layer structure from an analytical Landau–Ginzburg-type continuum theory incorporating ion correlation effects, and provide a new baseline for understanding the fundamental nanoscale response of RTILs at charged interfaces.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>23092400</pmid><doi>10.1021/nn303355b</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2012-11, Vol.6 (11), p.9818-9827
issn 1936-0851
1936-086X
language eng
recordid cdi_osti_scitechconnect_1061579
source MEDLINE; American Chemical Society Journals
subjects Cations
Charge density
Charging
Computer Simulation
Electromagnetic Fields
Graphene
Ionic liquids
Ionic Liquids - chemistry
Layering
Materials Testing
Mica
Models, Chemical
Molecular Conformation
Molecular Dynamics Simulation
Nanostructure
Nanostructures - chemistry
Nanostructures - ultrastructure
Particle Size
Phase Transition
Simulation
Surface Properties
Temperature
title Nanoscale Perturbations of Room Temperature Ionic Liquid Structure at Charged and Uncharged Interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A08%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoscale%20Perturbations%20of%20Room%20Temperature%20Ionic%20Liquid%20Structure%20at%20Charged%20and%20Uncharged%20Interfaces&rft.jtitle=ACS%20nano&rft.au=Zhou,%20Hua&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2012-11-27&rft.volume=6&rft.issue=11&rft.spage=9818&rft.epage=9827&rft.pages=9818-9827&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn303355b&rft_dat=%3Cproquest_osti_%3E1220573043%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1220573043&rft_id=info:pmid/23092400&rfr_iscdi=true