Carbon Materials for Chemical Capacitive Energy Storage

Carbon materials have attracted intense interests as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost. Activated carbons produced by different activation processes from various precursors are the most wid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2011-11, Vol.23 (42), p.4828-4850
Hauptverfasser: Zhai, Yunpu, Dou, Yuqian, Zhao, Dongyuan, Fulvio, Pasquale F., Mayes, Richard T., Dai, Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4850
container_issue 42
container_start_page 4828
container_title Advanced materials (Weinheim)
container_volume 23
creator Zhai, Yunpu
Dou, Yuqian
Zhao, Dongyuan
Fulvio, Pasquale F.
Mayes, Richard T.
Dai, Sheng
description Carbon materials have attracted intense interests as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost. Activated carbons produced by different activation processes from various precursors are the most widely used electrodes. Recently, with the rapid growth of nanotechnology, nanostructured electrode materials, such as carbon nanotubes and template‐synthesized porous carbons have been developed. Their unique electrical properties and well controlled pore sizes and structures facilitate fast ion and electron transportation. In order to further improve the power and energy densities of the capacitors, carbon‐based composites combining electrical double layer capacitors (EDLC)‐capacitance and pseudo‐capacitance have been explored. They show not only enhanced capacitance, but as well good cyclability. In this review, recent progresses on carbon‐based electrode materials are summarized, including activated carbons, carbon nanotubes, and template‐synthesized porous carbons, in particular mesoporous carbons. Their advantages and disadvantages as electrochemical capacitors are discussed. At the end of this review, the future trends of electrochemical capacitors with high energy and power are proposed. Carbon materials have attracted intense interest as electrodes for supercapacitors. A brief summary of recent research progress on carbon‐based electrodes is provided. An analysis of both advantages and disadvantages of different types of carbons are presented. The future trends of electrochemical capacitors with high energy and power are proposed.
doi_str_mv 10.1002/adma.201100984
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1059322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685776640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5084-a053f891ebec85388f3c6a47d76f41a209f7b950abe9fc2afd8ce8b318db05253</originalsourceid><addsrcrecordid>eNqF0E1v1DAQBmALgehSuHJEERe4ZBnbsWMfV2kplbrlAIij5Tjj1pCPxc4C--9xlXbFCU7WSM-8Y72EvKSwpgDsne0Gu2ZA86BV9YisqGC0rECLx2QFmotSy0qdkGcpfYNsJMin5IRRLbiuYEXqxsZ2GoutnTEG26fCT7FobnEIzvZFY3fWhTn8xOJ8xHhzKD7NU7Q3-Jw88Vnji_v3lHx5f_65-VBefby4bDZXpROgqtKC4F5pii06JbhSnjtpq7qrpa-oZaB93WoBtkXtHbO-Uw5Vy6nqWhBM8FPyesmd0hxMyn9Bd-umcUQ3GwpCc8YyerOgXZx-7DHNZgjJYd_bEad9MhpyPfl4neXbf0oqlahrKSvIdL1QF6eUInqzi2Gw8ZDPmrvuzV335th9Xnh1n71vB-yO_KHsDPQCfoUeD_-JM5uz7ebv8HLZDWnG38ddG78bWfNamK_XF-ZsC0roa2U0_wNpRJ0T</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685776640</pqid></control><display><type>article</type><title>Carbon Materials for Chemical Capacitive Energy Storage</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Zhai, Yunpu ; Dou, Yuqian ; Zhao, Dongyuan ; Fulvio, Pasquale F. ; Mayes, Richard T. ; Dai, Sheng</creator><creatorcontrib>Zhai, Yunpu ; Dou, Yuqian ; Zhao, Dongyuan ; Fulvio, Pasquale F. ; Mayes, Richard T. ; Dai, Sheng ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Carbon materials have attracted intense interests as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost. Activated carbons produced by different activation processes from various precursors are the most widely used electrodes. Recently, with the rapid growth of nanotechnology, nanostructured electrode materials, such as carbon nanotubes and template‐synthesized porous carbons have been developed. Their unique electrical properties and well controlled pore sizes and structures facilitate fast ion and electron transportation. In order to further improve the power and energy densities of the capacitors, carbon‐based composites combining electrical double layer capacitors (EDLC)‐capacitance and pseudo‐capacitance have been explored. They show not only enhanced capacitance, but as well good cyclability. In this review, recent progresses on carbon‐based electrode materials are summarized, including activated carbons, carbon nanotubes, and template‐synthesized porous carbons, in particular mesoporous carbons. Their advantages and disadvantages as electrochemical capacitors are discussed. At the end of this review, the future trends of electrochemical capacitors with high energy and power are proposed. Carbon materials have attracted intense interest as electrodes for supercapacitors. A brief summary of recent research progress on carbon‐based electrodes is provided. An analysis of both advantages and disadvantages of different types of carbons are presented. The future trends of electrochemical capacitors with high energy and power are proposed.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201100984</identifier><identifier>PMID: 21953940</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Activated carbon ; Capacitors ; Carbon ; Carbon - chemistry ; Carbon nanotubes ; Electric Conductivity ; Electric power generation ; electrochemical capacitors ; Electrochemical Techniques ; Electrode materials ; Electrodes ; Graphite - chemistry ; Nanostructured materials ; Nanostructures - chemistry ; Nanotubes, Carbon - chemistry ; Porosity ; supercapacitors ; Trends</subject><ispartof>Advanced materials (Weinheim), 2011-11, Vol.23 (42), p.4828-4850</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5084-a053f891ebec85388f3c6a47d76f41a209f7b950abe9fc2afd8ce8b318db05253</citedby><cites>FETCH-LOGICAL-c5084-a053f891ebec85388f3c6a47d76f41a209f7b950abe9fc2afd8ce8b318db05253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201100984$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201100984$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21953940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1059322$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhai, Yunpu</creatorcontrib><creatorcontrib>Dou, Yuqian</creatorcontrib><creatorcontrib>Zhao, Dongyuan</creatorcontrib><creatorcontrib>Fulvio, Pasquale F.</creatorcontrib><creatorcontrib>Mayes, Richard T.</creatorcontrib><creatorcontrib>Dai, Sheng</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Carbon Materials for Chemical Capacitive Energy Storage</title><title>Advanced materials (Weinheim)</title><addtitle>Adv. Mater</addtitle><description>Carbon materials have attracted intense interests as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost. Activated carbons produced by different activation processes from various precursors are the most widely used electrodes. Recently, with the rapid growth of nanotechnology, nanostructured electrode materials, such as carbon nanotubes and template‐synthesized porous carbons have been developed. Their unique electrical properties and well controlled pore sizes and structures facilitate fast ion and electron transportation. In order to further improve the power and energy densities of the capacitors, carbon‐based composites combining electrical double layer capacitors (EDLC)‐capacitance and pseudo‐capacitance have been explored. They show not only enhanced capacitance, but as well good cyclability. In this review, recent progresses on carbon‐based electrode materials are summarized, including activated carbons, carbon nanotubes, and template‐synthesized porous carbons, in particular mesoporous carbons. Their advantages and disadvantages as electrochemical capacitors are discussed. At the end of this review, the future trends of electrochemical capacitors with high energy and power are proposed. Carbon materials have attracted intense interest as electrodes for supercapacitors. A brief summary of recent research progress on carbon‐based electrodes is provided. An analysis of both advantages and disadvantages of different types of carbons are presented. The future trends of electrochemical capacitors with high energy and power are proposed.</description><subject>Activated carbon</subject><subject>Capacitors</subject><subject>Carbon</subject><subject>Carbon - chemistry</subject><subject>Carbon nanotubes</subject><subject>Electric Conductivity</subject><subject>Electric power generation</subject><subject>electrochemical capacitors</subject><subject>Electrochemical Techniques</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Graphite - chemistry</subject><subject>Nanostructured materials</subject><subject>Nanostructures - chemistry</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Porosity</subject><subject>supercapacitors</subject><subject>Trends</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0E1v1DAQBmALgehSuHJEERe4ZBnbsWMfV2kplbrlAIij5Tjj1pCPxc4C--9xlXbFCU7WSM-8Y72EvKSwpgDsne0Gu2ZA86BV9YisqGC0rECLx2QFmotSy0qdkGcpfYNsJMin5IRRLbiuYEXqxsZ2GoutnTEG26fCT7FobnEIzvZFY3fWhTn8xOJ8xHhzKD7NU7Q3-Jw88Vnji_v3lHx5f_65-VBefby4bDZXpROgqtKC4F5pii06JbhSnjtpq7qrpa-oZaB93WoBtkXtHbO-Uw5Vy6nqWhBM8FPyesmd0hxMyn9Bd-umcUQ3GwpCc8YyerOgXZx-7DHNZgjJYd_bEad9MhpyPfl4neXbf0oqlahrKSvIdL1QF6eUInqzi2Gw8ZDPmrvuzV335th9Xnh1n71vB-yO_KHsDPQCfoUeD_-JM5uz7ebv8HLZDWnG38ddG78bWfNamK_XF-ZsC0roa2U0_wNpRJ0T</recordid><startdate>20111109</startdate><enddate>20111109</enddate><creator>Zhai, Yunpu</creator><creator>Dou, Yuqian</creator><creator>Zhao, Dongyuan</creator><creator>Fulvio, Pasquale F.</creator><creator>Mayes, Richard T.</creator><creator>Dai, Sheng</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20111109</creationdate><title>Carbon Materials for Chemical Capacitive Energy Storage</title><author>Zhai, Yunpu ; Dou, Yuqian ; Zhao, Dongyuan ; Fulvio, Pasquale F. ; Mayes, Richard T. ; Dai, Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5084-a053f891ebec85388f3c6a47d76f41a209f7b950abe9fc2afd8ce8b318db05253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Activated carbon</topic><topic>Capacitors</topic><topic>Carbon</topic><topic>Carbon - chemistry</topic><topic>Carbon nanotubes</topic><topic>Electric Conductivity</topic><topic>Electric power generation</topic><topic>electrochemical capacitors</topic><topic>Electrochemical Techniques</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Graphite - chemistry</topic><topic>Nanostructured materials</topic><topic>Nanostructures - chemistry</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Porosity</topic><topic>supercapacitors</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Yunpu</creatorcontrib><creatorcontrib>Dou, Yuqian</creatorcontrib><creatorcontrib>Zhao, Dongyuan</creatorcontrib><creatorcontrib>Fulvio, Pasquale F.</creatorcontrib><creatorcontrib>Mayes, Richard T.</creatorcontrib><creatorcontrib>Dai, Sheng</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Yunpu</au><au>Dou, Yuqian</au><au>Zhao, Dongyuan</au><au>Fulvio, Pasquale F.</au><au>Mayes, Richard T.</au><au>Dai, Sheng</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Materials for Chemical Capacitive Energy Storage</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv. Mater</addtitle><date>2011-11-09</date><risdate>2011</risdate><volume>23</volume><issue>42</issue><spage>4828</spage><epage>4850</epage><pages>4828-4850</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Carbon materials have attracted intense interests as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost. Activated carbons produced by different activation processes from various precursors are the most widely used electrodes. Recently, with the rapid growth of nanotechnology, nanostructured electrode materials, such as carbon nanotubes and template‐synthesized porous carbons have been developed. Their unique electrical properties and well controlled pore sizes and structures facilitate fast ion and electron transportation. In order to further improve the power and energy densities of the capacitors, carbon‐based composites combining electrical double layer capacitors (EDLC)‐capacitance and pseudo‐capacitance have been explored. They show not only enhanced capacitance, but as well good cyclability. In this review, recent progresses on carbon‐based electrode materials are summarized, including activated carbons, carbon nanotubes, and template‐synthesized porous carbons, in particular mesoporous carbons. Their advantages and disadvantages as electrochemical capacitors are discussed. At the end of this review, the future trends of electrochemical capacitors with high energy and power are proposed. Carbon materials have attracted intense interest as electrodes for supercapacitors. A brief summary of recent research progress on carbon‐based electrodes is provided. An analysis of both advantages and disadvantages of different types of carbons are presented. The future trends of electrochemical capacitors with high energy and power are proposed.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>21953940</pmid><doi>10.1002/adma.201100984</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2011-11, Vol.23 (42), p.4828-4850
issn 0935-9648
1521-4095
language eng
recordid cdi_osti_scitechconnect_1059322
source MEDLINE; Access via Wiley Online Library
subjects Activated carbon
Capacitors
Carbon
Carbon - chemistry
Carbon nanotubes
Electric Conductivity
Electric power generation
electrochemical capacitors
Electrochemical Techniques
Electrode materials
Electrodes
Graphite - chemistry
Nanostructured materials
Nanostructures - chemistry
Nanotubes, Carbon - chemistry
Porosity
supercapacitors
Trends
title Carbon Materials for Chemical Capacitive Energy Storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T15%3A39%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Materials%20for%20Chemical%20Capacitive%20Energy%20Storage&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhai,%20Yunpu&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2011-11-09&rft.volume=23&rft.issue=42&rft.spage=4828&rft.epage=4850&rft.pages=4828-4850&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201100984&rft_dat=%3Cproquest_osti_%3E1685776640%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685776640&rft_id=info:pmid/21953940&rfr_iscdi=true