Carbon Materials for Chemical Capacitive Energy Storage
Carbon materials have attracted intense interests as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost. Activated carbons produced by different activation processes from various precursors are the most wid...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2011-11, Vol.23 (42), p.4828-4850 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4850 |
---|---|
container_issue | 42 |
container_start_page | 4828 |
container_title | Advanced materials (Weinheim) |
container_volume | 23 |
creator | Zhai, Yunpu Dou, Yuqian Zhao, Dongyuan Fulvio, Pasquale F. Mayes, Richard T. Dai, Sheng |
description | Carbon materials have attracted intense interests as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost. Activated carbons produced by different activation processes from various precursors are the most widely used electrodes. Recently, with the rapid growth of nanotechnology, nanostructured electrode materials, such as carbon nanotubes and template‐synthesized porous carbons have been developed. Their unique electrical properties and well controlled pore sizes and structures facilitate fast ion and electron transportation. In order to further improve the power and energy densities of the capacitors, carbon‐based composites combining electrical double layer capacitors (EDLC)‐capacitance and pseudo‐capacitance have been explored. They show not only enhanced capacitance, but as well good cyclability. In this review, recent progresses on carbon‐based electrode materials are summarized, including activated carbons, carbon nanotubes, and template‐synthesized porous carbons, in particular mesoporous carbons. Their advantages and disadvantages as electrochemical capacitors are discussed. At the end of this review, the future trends of electrochemical capacitors with high energy and power are proposed.
Carbon materials have attracted intense interest as electrodes for supercapacitors. A brief summary of recent research progress on carbon‐based electrodes is provided. An analysis of both advantages and disadvantages of different types of carbons are presented. The future trends of electrochemical capacitors with high energy and power are proposed. |
doi_str_mv | 10.1002/adma.201100984 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1059322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1685776640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5084-a053f891ebec85388f3c6a47d76f41a209f7b950abe9fc2afd8ce8b318db05253</originalsourceid><addsrcrecordid>eNqF0E1v1DAQBmALgehSuHJEERe4ZBnbsWMfV2kplbrlAIij5Tjj1pCPxc4C--9xlXbFCU7WSM-8Y72EvKSwpgDsne0Gu2ZA86BV9YisqGC0rECLx2QFmotSy0qdkGcpfYNsJMin5IRRLbiuYEXqxsZ2GoutnTEG26fCT7FobnEIzvZFY3fWhTn8xOJ8xHhzKD7NU7Q3-Jw88Vnji_v3lHx5f_65-VBefby4bDZXpROgqtKC4F5pii06JbhSnjtpq7qrpa-oZaB93WoBtkXtHbO-Uw5Vy6nqWhBM8FPyesmd0hxMyn9Bd-umcUQ3GwpCc8YyerOgXZx-7DHNZgjJYd_bEad9MhpyPfl4neXbf0oqlahrKSvIdL1QF6eUInqzi2Gw8ZDPmrvuzV335th9Xnh1n71vB-yO_KHsDPQCfoUeD_-JM5uz7ebv8HLZDWnG38ddG78bWfNamK_XF-ZsC0roa2U0_wNpRJ0T</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685776640</pqid></control><display><type>article</type><title>Carbon Materials for Chemical Capacitive Energy Storage</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Zhai, Yunpu ; Dou, Yuqian ; Zhao, Dongyuan ; Fulvio, Pasquale F. ; Mayes, Richard T. ; Dai, Sheng</creator><creatorcontrib>Zhai, Yunpu ; Dou, Yuqian ; Zhao, Dongyuan ; Fulvio, Pasquale F. ; Mayes, Richard T. ; Dai, Sheng ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Carbon materials have attracted intense interests as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost. Activated carbons produced by different activation processes from various precursors are the most widely used electrodes. Recently, with the rapid growth of nanotechnology, nanostructured electrode materials, such as carbon nanotubes and template‐synthesized porous carbons have been developed. Their unique electrical properties and well controlled pore sizes and structures facilitate fast ion and electron transportation. In order to further improve the power and energy densities of the capacitors, carbon‐based composites combining electrical double layer capacitors (EDLC)‐capacitance and pseudo‐capacitance have been explored. They show not only enhanced capacitance, but as well good cyclability. In this review, recent progresses on carbon‐based electrode materials are summarized, including activated carbons, carbon nanotubes, and template‐synthesized porous carbons, in particular mesoporous carbons. Their advantages and disadvantages as electrochemical capacitors are discussed. At the end of this review, the future trends of electrochemical capacitors with high energy and power are proposed.
Carbon materials have attracted intense interest as electrodes for supercapacitors. A brief summary of recent research progress on carbon‐based electrodes is provided. An analysis of both advantages and disadvantages of different types of carbons are presented. The future trends of electrochemical capacitors with high energy and power are proposed.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201100984</identifier><identifier>PMID: 21953940</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Activated carbon ; Capacitors ; Carbon ; Carbon - chemistry ; Carbon nanotubes ; Electric Conductivity ; Electric power generation ; electrochemical capacitors ; Electrochemical Techniques ; Electrode materials ; Electrodes ; Graphite - chemistry ; Nanostructured materials ; Nanostructures - chemistry ; Nanotubes, Carbon - chemistry ; Porosity ; supercapacitors ; Trends</subject><ispartof>Advanced materials (Weinheim), 2011-11, Vol.23 (42), p.4828-4850</ispartof><rights>Copyright © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5084-a053f891ebec85388f3c6a47d76f41a209f7b950abe9fc2afd8ce8b318db05253</citedby><cites>FETCH-LOGICAL-c5084-a053f891ebec85388f3c6a47d76f41a209f7b950abe9fc2afd8ce8b318db05253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201100984$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201100984$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21953940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1059322$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhai, Yunpu</creatorcontrib><creatorcontrib>Dou, Yuqian</creatorcontrib><creatorcontrib>Zhao, Dongyuan</creatorcontrib><creatorcontrib>Fulvio, Pasquale F.</creatorcontrib><creatorcontrib>Mayes, Richard T.</creatorcontrib><creatorcontrib>Dai, Sheng</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Carbon Materials for Chemical Capacitive Energy Storage</title><title>Advanced materials (Weinheim)</title><addtitle>Adv. Mater</addtitle><description>Carbon materials have attracted intense interests as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost. Activated carbons produced by different activation processes from various precursors are the most widely used electrodes. Recently, with the rapid growth of nanotechnology, nanostructured electrode materials, such as carbon nanotubes and template‐synthesized porous carbons have been developed. Their unique electrical properties and well controlled pore sizes and structures facilitate fast ion and electron transportation. In order to further improve the power and energy densities of the capacitors, carbon‐based composites combining electrical double layer capacitors (EDLC)‐capacitance and pseudo‐capacitance have been explored. They show not only enhanced capacitance, but as well good cyclability. In this review, recent progresses on carbon‐based electrode materials are summarized, including activated carbons, carbon nanotubes, and template‐synthesized porous carbons, in particular mesoporous carbons. Their advantages and disadvantages as electrochemical capacitors are discussed. At the end of this review, the future trends of electrochemical capacitors with high energy and power are proposed.
Carbon materials have attracted intense interest as electrodes for supercapacitors. A brief summary of recent research progress on carbon‐based electrodes is provided. An analysis of both advantages and disadvantages of different types of carbons are presented. The future trends of electrochemical capacitors with high energy and power are proposed.</description><subject>Activated carbon</subject><subject>Capacitors</subject><subject>Carbon</subject><subject>Carbon - chemistry</subject><subject>Carbon nanotubes</subject><subject>Electric Conductivity</subject><subject>Electric power generation</subject><subject>electrochemical capacitors</subject><subject>Electrochemical Techniques</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Graphite - chemistry</subject><subject>Nanostructured materials</subject><subject>Nanostructures - chemistry</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Porosity</subject><subject>supercapacitors</subject><subject>Trends</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0E1v1DAQBmALgehSuHJEERe4ZBnbsWMfV2kplbrlAIij5Tjj1pCPxc4C--9xlXbFCU7WSM-8Y72EvKSwpgDsne0Gu2ZA86BV9YisqGC0rECLx2QFmotSy0qdkGcpfYNsJMin5IRRLbiuYEXqxsZ2GoutnTEG26fCT7FobnEIzvZFY3fWhTn8xOJ8xHhzKD7NU7Q3-Jw88Vnji_v3lHx5f_65-VBefby4bDZXpROgqtKC4F5pii06JbhSnjtpq7qrpa-oZaB93WoBtkXtHbO-Uw5Vy6nqWhBM8FPyesmd0hxMyn9Bd-umcUQ3GwpCc8YyerOgXZx-7DHNZgjJYd_bEad9MhpyPfl4neXbf0oqlahrKSvIdL1QF6eUInqzi2Gw8ZDPmrvuzV335th9Xnh1n71vB-yO_KHsDPQCfoUeD_-JM5uz7ebv8HLZDWnG38ddG78bWfNamK_XF-ZsC0roa2U0_wNpRJ0T</recordid><startdate>20111109</startdate><enddate>20111109</enddate><creator>Zhai, Yunpu</creator><creator>Dou, Yuqian</creator><creator>Zhao, Dongyuan</creator><creator>Fulvio, Pasquale F.</creator><creator>Mayes, Richard T.</creator><creator>Dai, Sheng</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20111109</creationdate><title>Carbon Materials for Chemical Capacitive Energy Storage</title><author>Zhai, Yunpu ; Dou, Yuqian ; Zhao, Dongyuan ; Fulvio, Pasquale F. ; Mayes, Richard T. ; Dai, Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5084-a053f891ebec85388f3c6a47d76f41a209f7b950abe9fc2afd8ce8b318db05253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Activated carbon</topic><topic>Capacitors</topic><topic>Carbon</topic><topic>Carbon - chemistry</topic><topic>Carbon nanotubes</topic><topic>Electric Conductivity</topic><topic>Electric power generation</topic><topic>electrochemical capacitors</topic><topic>Electrochemical Techniques</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Graphite - chemistry</topic><topic>Nanostructured materials</topic><topic>Nanostructures - chemistry</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Porosity</topic><topic>supercapacitors</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhai, Yunpu</creatorcontrib><creatorcontrib>Dou, Yuqian</creatorcontrib><creatorcontrib>Zhao, Dongyuan</creatorcontrib><creatorcontrib>Fulvio, Pasquale F.</creatorcontrib><creatorcontrib>Mayes, Richard T.</creatorcontrib><creatorcontrib>Dai, Sheng</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhai, Yunpu</au><au>Dou, Yuqian</au><au>Zhao, Dongyuan</au><au>Fulvio, Pasquale F.</au><au>Mayes, Richard T.</au><au>Dai, Sheng</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbon Materials for Chemical Capacitive Energy Storage</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv. Mater</addtitle><date>2011-11-09</date><risdate>2011</risdate><volume>23</volume><issue>42</issue><spage>4828</spage><epage>4850</epage><pages>4828-4850</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Carbon materials have attracted intense interests as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost. Activated carbons produced by different activation processes from various precursors are the most widely used electrodes. Recently, with the rapid growth of nanotechnology, nanostructured electrode materials, such as carbon nanotubes and template‐synthesized porous carbons have been developed. Their unique electrical properties and well controlled pore sizes and structures facilitate fast ion and electron transportation. In order to further improve the power and energy densities of the capacitors, carbon‐based composites combining electrical double layer capacitors (EDLC)‐capacitance and pseudo‐capacitance have been explored. They show not only enhanced capacitance, but as well good cyclability. In this review, recent progresses on carbon‐based electrode materials are summarized, including activated carbons, carbon nanotubes, and template‐synthesized porous carbons, in particular mesoporous carbons. Their advantages and disadvantages as electrochemical capacitors are discussed. At the end of this review, the future trends of electrochemical capacitors with high energy and power are proposed.
Carbon materials have attracted intense interest as electrodes for supercapacitors. A brief summary of recent research progress on carbon‐based electrodes is provided. An analysis of both advantages and disadvantages of different types of carbons are presented. The future trends of electrochemical capacitors with high energy and power are proposed.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>21953940</pmid><doi>10.1002/adma.201100984</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2011-11, Vol.23 (42), p.4828-4850 |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_osti_scitechconnect_1059322 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Activated carbon Capacitors Carbon Carbon - chemistry Carbon nanotubes Electric Conductivity Electric power generation electrochemical capacitors Electrochemical Techniques Electrode materials Electrodes Graphite - chemistry Nanostructured materials Nanostructures - chemistry Nanotubes, Carbon - chemistry Porosity supercapacitors Trends |
title | Carbon Materials for Chemical Capacitive Energy Storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T15%3A39%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbon%20Materials%20for%20Chemical%20Capacitive%20Energy%20Storage&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhai,%20Yunpu&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2011-11-09&rft.volume=23&rft.issue=42&rft.spage=4828&rft.epage=4850&rft.pages=4828-4850&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201100984&rft_dat=%3Cproquest_osti_%3E1685776640%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685776640&rft_id=info:pmid/21953940&rfr_iscdi=true |