Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850°C

Strain-controlled low cycle fatigue (LCF) and creep-fatigue testing of Ni-based alloy 230 were carried out at 850°C. The material creep-fatigue life decreased compared with its low cycle fatigue life at the same total strain range. Longer hold time at peak tensile strain further reduced the material...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2013-02, Vol.563, p.152-162
Hauptverfasser: Chen, Xiang, Yang, Zhiqing, Sokolov, Mikhail A., Erdman, Donald L., Mo, Kun, Stubbins, James F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 162
container_issue
container_start_page 152
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 563
creator Chen, Xiang
Yang, Zhiqing
Sokolov, Mikhail A.
Erdman, Donald L.
Mo, Kun
Stubbins, James F.
description Strain-controlled low cycle fatigue (LCF) and creep-fatigue testing of Ni-based alloy 230 were carried out at 850°C. The material creep-fatigue life decreased compared with its low cycle fatigue life at the same total strain range. Longer hold time at peak tensile strain further reduced the material creep-fatigue life. Based on the electron backscatter diffraction, a novel material deformation characterization method was applied, which revealed that in low cycle fatigue testing as the total strain range increased, the deformation was segregated to grain boundaries since the test temperature was higher than the material equicohesive temperature and grain boundaries became weaker regions compared with grains. Creep-fatigue tests enhanced the localized deformation, resulting in material interior intergranular cracking, and accelerated material damage. Precipitation in alloy 230 helped slip dispersion, favorable for fatigue property, but grain boundary cellular precipitates formed after material exposure to the elevated temperature had a deleterious effect on the material low cycle fatigue and creep-fatigue property.
doi_str_mv 10.1016/j.msea.2012.11.063
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1057497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509312016152</els_id><sourcerecordid>S0921509312016152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-1df2f63b76c23c0d091ddf4dc4712079c02fec53fd5058bf9e3ea299891f71723</originalsourceid><addsrcrecordid>eNp9kM2KFDEQx4MoOK77AnsKgsduq5JOZwJeZPALBr2455CpVNwMvd1D0q7MW_kM-2R2M-rRU0Hx-9fHT4gbhBYB-zfH9r5yaBWgahFb6PUTscGt1U3ndP9UbMApbAw4_Vy8qPUIANiB2Yj9fvop6UwDyxTm_P0HyzBGSYX51PztHPguPOSpyCnJL7k5hMpRhmGYzlJpkGGWWwOPv3YvxbMUhsrXf-qVuP3w_tvuU7P_-vHz7t2-IWXV3GBMKvX6YHtSmiCCwxhTF6mzqMA6ApWYjE7RgNkekmPNQTm3dZgsWqWvxKvL3KnO2VfKM9MdTePINHsEYztnF0hdICpTrYWTP5V8H8p5IfwqzR_9Ks2v0jyiX6QtodeX0ClUCkMqYaRc_yVV75QxGhbu7YXj5c2HzGW9gkfimMt6RJzy_9b8BnJagIY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850°C</title><source>Access via ScienceDirect (Elsevier)</source><creator>Chen, Xiang ; Yang, Zhiqing ; Sokolov, Mikhail A. ; Erdman, Donald L. ; Mo, Kun ; Stubbins, James F.</creator><creatorcontrib>Chen, Xiang ; Yang, Zhiqing ; Sokolov, Mikhail A. ; Erdman, Donald L. ; Mo, Kun ; Stubbins, James F. ; Shared Research Equipment Collaborative Research Center ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Strain-controlled low cycle fatigue (LCF) and creep-fatigue testing of Ni-based alloy 230 were carried out at 850°C. The material creep-fatigue life decreased compared with its low cycle fatigue life at the same total strain range. Longer hold time at peak tensile strain further reduced the material creep-fatigue life. Based on the electron backscatter diffraction, a novel material deformation characterization method was applied, which revealed that in low cycle fatigue testing as the total strain range increased, the deformation was segregated to grain boundaries since the test temperature was higher than the material equicohesive temperature and grain boundaries became weaker regions compared with grains. Creep-fatigue tests enhanced the localized deformation, resulting in material interior intergranular cracking, and accelerated material damage. Precipitation in alloy 230 helped slip dispersion, favorable for fatigue property, but grain boundary cellular precipitates formed after material exposure to the elevated temperature had a deleterious effect on the material low cycle fatigue and creep-fatigue property.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2012.11.063</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Applied sciences ; Condensed matter: structure, mechanical and thermal properties ; Creep ; Creep-fatigue ; EBSD ; Exact sciences and technology ; Failure ; Fatigue ; Fatigue, brittleness, fracture, and cracks ; Fractures ; High-temperature deformation ; Mechanical and acoustical properties of condensed matter ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Mechanical properties of solids ; Metals. Metallurgy ; Nickel based superalloys ; Physics ; Precipitation</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2013-02, Vol.563, p.152-162</ispartof><rights>2012</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c272t-1df2f63b76c23c0d091ddf4dc4712079c02fec53fd5058bf9e3ea299891f71723</citedby><cites>FETCH-LOGICAL-c272t-1df2f63b76c23c0d091ddf4dc4712079c02fec53fd5058bf9e3ea299891f71723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2012.11.063$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26925530$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1057497$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Xiang</creatorcontrib><creatorcontrib>Yang, Zhiqing</creatorcontrib><creatorcontrib>Sokolov, Mikhail A.</creatorcontrib><creatorcontrib>Erdman, Donald L.</creatorcontrib><creatorcontrib>Mo, Kun</creatorcontrib><creatorcontrib>Stubbins, James F.</creatorcontrib><creatorcontrib>Shared Research Equipment Collaborative Research Center</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850°C</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>Strain-controlled low cycle fatigue (LCF) and creep-fatigue testing of Ni-based alloy 230 were carried out at 850°C. The material creep-fatigue life decreased compared with its low cycle fatigue life at the same total strain range. Longer hold time at peak tensile strain further reduced the material creep-fatigue life. Based on the electron backscatter diffraction, a novel material deformation characterization method was applied, which revealed that in low cycle fatigue testing as the total strain range increased, the deformation was segregated to grain boundaries since the test temperature was higher than the material equicohesive temperature and grain boundaries became weaker regions compared with grains. Creep-fatigue tests enhanced the localized deformation, resulting in material interior intergranular cracking, and accelerated material damage. Precipitation in alloy 230 helped slip dispersion, favorable for fatigue property, but grain boundary cellular precipitates formed after material exposure to the elevated temperature had a deleterious effect on the material low cycle fatigue and creep-fatigue property.</description><subject>Applied sciences</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Creep</subject><subject>Creep-fatigue</subject><subject>EBSD</subject><subject>Exact sciences and technology</subject><subject>Failure</subject><subject>Fatigue</subject><subject>Fatigue, brittleness, fracture, and cracks</subject><subject>Fractures</subject><subject>High-temperature deformation</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Mechanical properties of solids</subject><subject>Metals. Metallurgy</subject><subject>Nickel based superalloys</subject><subject>Physics</subject><subject>Precipitation</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kM2KFDEQx4MoOK77AnsKgsduq5JOZwJeZPALBr2455CpVNwMvd1D0q7MW_kM-2R2M-rRU0Hx-9fHT4gbhBYB-zfH9r5yaBWgahFb6PUTscGt1U3ndP9UbMApbAw4_Vy8qPUIANiB2Yj9fvop6UwDyxTm_P0HyzBGSYX51PztHPguPOSpyCnJL7k5hMpRhmGYzlJpkGGWWwOPv3YvxbMUhsrXf-qVuP3w_tvuU7P_-vHz7t2-IWXV3GBMKvX6YHtSmiCCwxhTF6mzqMA6ApWYjE7RgNkekmPNQTm3dZgsWqWvxKvL3KnO2VfKM9MdTePINHsEYztnF0hdICpTrYWTP5V8H8p5IfwqzR_9Ks2v0jyiX6QtodeX0ClUCkMqYaRc_yVV75QxGhbu7YXj5c2HzGW9gkfimMt6RJzy_9b8BnJagIY</recordid><startdate>20130215</startdate><enddate>20130215</enddate><creator>Chen, Xiang</creator><creator>Yang, Zhiqing</creator><creator>Sokolov, Mikhail A.</creator><creator>Erdman, Donald L.</creator><creator>Mo, Kun</creator><creator>Stubbins, James F.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20130215</creationdate><title>Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850°C</title><author>Chen, Xiang ; Yang, Zhiqing ; Sokolov, Mikhail A. ; Erdman, Donald L. ; Mo, Kun ; Stubbins, James F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-1df2f63b76c23c0d091ddf4dc4712079c02fec53fd5058bf9e3ea299891f71723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Creep</topic><topic>Creep-fatigue</topic><topic>EBSD</topic><topic>Exact sciences and technology</topic><topic>Failure</topic><topic>Fatigue</topic><topic>Fatigue, brittleness, fracture, and cracks</topic><topic>Fractures</topic><topic>High-temperature deformation</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Mechanical properties of solids</topic><topic>Metals. Metallurgy</topic><topic>Nickel based superalloys</topic><topic>Physics</topic><topic>Precipitation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiang</creatorcontrib><creatorcontrib>Yang, Zhiqing</creatorcontrib><creatorcontrib>Sokolov, Mikhail A.</creatorcontrib><creatorcontrib>Erdman, Donald L.</creatorcontrib><creatorcontrib>Mo, Kun</creatorcontrib><creatorcontrib>Stubbins, James F.</creatorcontrib><creatorcontrib>Shared Research Equipment Collaborative Research Center</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xiang</au><au>Yang, Zhiqing</au><au>Sokolov, Mikhail A.</au><au>Erdman, Donald L.</au><au>Mo, Kun</au><au>Stubbins, James F.</au><aucorp>Shared Research Equipment Collaborative Research Center</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850°C</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2013-02-15</date><risdate>2013</risdate><volume>563</volume><spage>152</spage><epage>162</epage><pages>152-162</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Strain-controlled low cycle fatigue (LCF) and creep-fatigue testing of Ni-based alloy 230 were carried out at 850°C. The material creep-fatigue life decreased compared with its low cycle fatigue life at the same total strain range. Longer hold time at peak tensile strain further reduced the material creep-fatigue life. Based on the electron backscatter diffraction, a novel material deformation characterization method was applied, which revealed that in low cycle fatigue testing as the total strain range increased, the deformation was segregated to grain boundaries since the test temperature was higher than the material equicohesive temperature and grain boundaries became weaker regions compared with grains. Creep-fatigue tests enhanced the localized deformation, resulting in material interior intergranular cracking, and accelerated material damage. Precipitation in alloy 230 helped slip dispersion, favorable for fatigue property, but grain boundary cellular precipitates formed after material exposure to the elevated temperature had a deleterious effect on the material low cycle fatigue and creep-fatigue property.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2012.11.063</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2013-02, Vol.563, p.152-162
issn 0921-5093
1873-4936
language eng
recordid cdi_osti_scitechconnect_1057497
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Condensed matter: structure, mechanical and thermal properties
Creep
Creep-fatigue
EBSD
Exact sciences and technology
Failure
Fatigue
Fatigue, brittleness, fracture, and cracks
Fractures
High-temperature deformation
Mechanical and acoustical properties of condensed matter
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Mechanical properties of solids
Metals. Metallurgy
Nickel based superalloys
Physics
Precipitation
title Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850°C
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T23%3A45%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20cycle%20fatigue%20and%20creep-fatigue%20behavior%20of%20Ni-based%20alloy%20230%20at%20850%C2%B0C&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Chen,%20Xiang&rft.aucorp=Shared%20Research%20Equipment%20Collaborative%20Research%20Center&rft.date=2013-02-15&rft.volume=563&rft.spage=152&rft.epage=162&rft.pages=152-162&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2012.11.063&rft_dat=%3Celsevier_osti_%3ES0921509312016152%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0921509312016152&rfr_iscdi=true