Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850°C
Strain-controlled low cycle fatigue (LCF) and creep-fatigue testing of Ni-based alloy 230 were carried out at 850°C. The material creep-fatigue life decreased compared with its low cycle fatigue life at the same total strain range. Longer hold time at peak tensile strain further reduced the material...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2013-02, Vol.563, p.152-162 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 162 |
---|---|
container_issue | |
container_start_page | 152 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 563 |
creator | Chen, Xiang Yang, Zhiqing Sokolov, Mikhail A. Erdman, Donald L. Mo, Kun Stubbins, James F. |
description | Strain-controlled low cycle fatigue (LCF) and creep-fatigue testing of Ni-based alloy 230 were carried out at 850°C. The material creep-fatigue life decreased compared with its low cycle fatigue life at the same total strain range. Longer hold time at peak tensile strain further reduced the material creep-fatigue life. Based on the electron backscatter diffraction, a novel material deformation characterization method was applied, which revealed that in low cycle fatigue testing as the total strain range increased, the deformation was segregated to grain boundaries since the test temperature was higher than the material equicohesive temperature and grain boundaries became weaker regions compared with grains. Creep-fatigue tests enhanced the localized deformation, resulting in material interior intergranular cracking, and accelerated material damage. Precipitation in alloy 230 helped slip dispersion, favorable for fatigue property, but grain boundary cellular precipitates formed after material exposure to the elevated temperature had a deleterious effect on the material low cycle fatigue and creep-fatigue property. |
doi_str_mv | 10.1016/j.msea.2012.11.063 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1057497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509312016152</els_id><sourcerecordid>S0921509312016152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-1df2f63b76c23c0d091ddf4dc4712079c02fec53fd5058bf9e3ea299891f71723</originalsourceid><addsrcrecordid>eNp9kM2KFDEQx4MoOK77AnsKgsduq5JOZwJeZPALBr2455CpVNwMvd1D0q7MW_kM-2R2M-rRU0Hx-9fHT4gbhBYB-zfH9r5yaBWgahFb6PUTscGt1U3ndP9UbMApbAw4_Vy8qPUIANiB2Yj9fvop6UwDyxTm_P0HyzBGSYX51PztHPguPOSpyCnJL7k5hMpRhmGYzlJpkGGWWwOPv3YvxbMUhsrXf-qVuP3w_tvuU7P_-vHz7t2-IWXV3GBMKvX6YHtSmiCCwxhTF6mzqMA6ApWYjE7RgNkekmPNQTm3dZgsWqWvxKvL3KnO2VfKM9MdTePINHsEYztnF0hdICpTrYWTP5V8H8p5IfwqzR_9Ks2v0jyiX6QtodeX0ClUCkMqYaRc_yVV75QxGhbu7YXj5c2HzGW9gkfimMt6RJzy_9b8BnJagIY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850°C</title><source>Access via ScienceDirect (Elsevier)</source><creator>Chen, Xiang ; Yang, Zhiqing ; Sokolov, Mikhail A. ; Erdman, Donald L. ; Mo, Kun ; Stubbins, James F.</creator><creatorcontrib>Chen, Xiang ; Yang, Zhiqing ; Sokolov, Mikhail A. ; Erdman, Donald L. ; Mo, Kun ; Stubbins, James F. ; Shared Research Equipment Collaborative Research Center ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Strain-controlled low cycle fatigue (LCF) and creep-fatigue testing of Ni-based alloy 230 were carried out at 850°C. The material creep-fatigue life decreased compared with its low cycle fatigue life at the same total strain range. Longer hold time at peak tensile strain further reduced the material creep-fatigue life. Based on the electron backscatter diffraction, a novel material deformation characterization method was applied, which revealed that in low cycle fatigue testing as the total strain range increased, the deformation was segregated to grain boundaries since the test temperature was higher than the material equicohesive temperature and grain boundaries became weaker regions compared with grains. Creep-fatigue tests enhanced the localized deformation, resulting in material interior intergranular cracking, and accelerated material damage. Precipitation in alloy 230 helped slip dispersion, favorable for fatigue property, but grain boundary cellular precipitates formed after material exposure to the elevated temperature had a deleterious effect on the material low cycle fatigue and creep-fatigue property.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2012.11.063</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Applied sciences ; Condensed matter: structure, mechanical and thermal properties ; Creep ; Creep-fatigue ; EBSD ; Exact sciences and technology ; Failure ; Fatigue ; Fatigue, brittleness, fracture, and cracks ; Fractures ; High-temperature deformation ; Mechanical and acoustical properties of condensed matter ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Mechanical properties of solids ; Metals. Metallurgy ; Nickel based superalloys ; Physics ; Precipitation</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2013-02, Vol.563, p.152-162</ispartof><rights>2012</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c272t-1df2f63b76c23c0d091ddf4dc4712079c02fec53fd5058bf9e3ea299891f71723</citedby><cites>FETCH-LOGICAL-c272t-1df2f63b76c23c0d091ddf4dc4712079c02fec53fd5058bf9e3ea299891f71723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2012.11.063$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26925530$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1057497$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Xiang</creatorcontrib><creatorcontrib>Yang, Zhiqing</creatorcontrib><creatorcontrib>Sokolov, Mikhail A.</creatorcontrib><creatorcontrib>Erdman, Donald L.</creatorcontrib><creatorcontrib>Mo, Kun</creatorcontrib><creatorcontrib>Stubbins, James F.</creatorcontrib><creatorcontrib>Shared Research Equipment Collaborative Research Center</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850°C</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>Strain-controlled low cycle fatigue (LCF) and creep-fatigue testing of Ni-based alloy 230 were carried out at 850°C. The material creep-fatigue life decreased compared with its low cycle fatigue life at the same total strain range. Longer hold time at peak tensile strain further reduced the material creep-fatigue life. Based on the electron backscatter diffraction, a novel material deformation characterization method was applied, which revealed that in low cycle fatigue testing as the total strain range increased, the deformation was segregated to grain boundaries since the test temperature was higher than the material equicohesive temperature and grain boundaries became weaker regions compared with grains. Creep-fatigue tests enhanced the localized deformation, resulting in material interior intergranular cracking, and accelerated material damage. Precipitation in alloy 230 helped slip dispersion, favorable for fatigue property, but grain boundary cellular precipitates formed after material exposure to the elevated temperature had a deleterious effect on the material low cycle fatigue and creep-fatigue property.</description><subject>Applied sciences</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Creep</subject><subject>Creep-fatigue</subject><subject>EBSD</subject><subject>Exact sciences and technology</subject><subject>Failure</subject><subject>Fatigue</subject><subject>Fatigue, brittleness, fracture, and cracks</subject><subject>Fractures</subject><subject>High-temperature deformation</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Mechanical properties of solids</subject><subject>Metals. Metallurgy</subject><subject>Nickel based superalloys</subject><subject>Physics</subject><subject>Precipitation</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kM2KFDEQx4MoOK77AnsKgsduq5JOZwJeZPALBr2455CpVNwMvd1D0q7MW_kM-2R2M-rRU0Hx-9fHT4gbhBYB-zfH9r5yaBWgahFb6PUTscGt1U3ndP9UbMApbAw4_Vy8qPUIANiB2Yj9fvop6UwDyxTm_P0HyzBGSYX51PztHPguPOSpyCnJL7k5hMpRhmGYzlJpkGGWWwOPv3YvxbMUhsrXf-qVuP3w_tvuU7P_-vHz7t2-IWXV3GBMKvX6YHtSmiCCwxhTF6mzqMA6ApWYjE7RgNkekmPNQTm3dZgsWqWvxKvL3KnO2VfKM9MdTePINHsEYztnF0hdICpTrYWTP5V8H8p5IfwqzR_9Ks2v0jyiX6QtodeX0ClUCkMqYaRc_yVV75QxGhbu7YXj5c2HzGW9gkfimMt6RJzy_9b8BnJagIY</recordid><startdate>20130215</startdate><enddate>20130215</enddate><creator>Chen, Xiang</creator><creator>Yang, Zhiqing</creator><creator>Sokolov, Mikhail A.</creator><creator>Erdman, Donald L.</creator><creator>Mo, Kun</creator><creator>Stubbins, James F.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20130215</creationdate><title>Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850°C</title><author>Chen, Xiang ; Yang, Zhiqing ; Sokolov, Mikhail A. ; Erdman, Donald L. ; Mo, Kun ; Stubbins, James F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-1df2f63b76c23c0d091ddf4dc4712079c02fec53fd5058bf9e3ea299891f71723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Creep</topic><topic>Creep-fatigue</topic><topic>EBSD</topic><topic>Exact sciences and technology</topic><topic>Failure</topic><topic>Fatigue</topic><topic>Fatigue, brittleness, fracture, and cracks</topic><topic>Fractures</topic><topic>High-temperature deformation</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Mechanical properties of solids</topic><topic>Metals. Metallurgy</topic><topic>Nickel based superalloys</topic><topic>Physics</topic><topic>Precipitation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiang</creatorcontrib><creatorcontrib>Yang, Zhiqing</creatorcontrib><creatorcontrib>Sokolov, Mikhail A.</creatorcontrib><creatorcontrib>Erdman, Donald L.</creatorcontrib><creatorcontrib>Mo, Kun</creatorcontrib><creatorcontrib>Stubbins, James F.</creatorcontrib><creatorcontrib>Shared Research Equipment Collaborative Research Center</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xiang</au><au>Yang, Zhiqing</au><au>Sokolov, Mikhail A.</au><au>Erdman, Donald L.</au><au>Mo, Kun</au><au>Stubbins, James F.</au><aucorp>Shared Research Equipment Collaborative Research Center</aucorp><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850°C</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2013-02-15</date><risdate>2013</risdate><volume>563</volume><spage>152</spage><epage>162</epage><pages>152-162</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Strain-controlled low cycle fatigue (LCF) and creep-fatigue testing of Ni-based alloy 230 were carried out at 850°C. The material creep-fatigue life decreased compared with its low cycle fatigue life at the same total strain range. Longer hold time at peak tensile strain further reduced the material creep-fatigue life. Based on the electron backscatter diffraction, a novel material deformation characterization method was applied, which revealed that in low cycle fatigue testing as the total strain range increased, the deformation was segregated to grain boundaries since the test temperature was higher than the material equicohesive temperature and grain boundaries became weaker regions compared with grains. Creep-fatigue tests enhanced the localized deformation, resulting in material interior intergranular cracking, and accelerated material damage. Precipitation in alloy 230 helped slip dispersion, favorable for fatigue property, but grain boundary cellular precipitates formed after material exposure to the elevated temperature had a deleterious effect on the material low cycle fatigue and creep-fatigue property.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2012.11.063</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2013-02, Vol.563, p.152-162 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_osti_scitechconnect_1057497 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Condensed matter: structure, mechanical and thermal properties Creep Creep-fatigue EBSD Exact sciences and technology Failure Fatigue Fatigue, brittleness, fracture, and cracks Fractures High-temperature deformation Mechanical and acoustical properties of condensed matter Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Mechanical properties of solids Metals. Metallurgy Nickel based superalloys Physics Precipitation |
title | Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850°C |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T23%3A45%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20cycle%20fatigue%20and%20creep-fatigue%20behavior%20of%20Ni-based%20alloy%20230%20at%20850%C2%B0C&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Chen,%20Xiang&rft.aucorp=Shared%20Research%20Equipment%20Collaborative%20Research%20Center&rft.date=2013-02-15&rft.volume=563&rft.spage=152&rft.epage=162&rft.pages=152-162&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2012.11.063&rft_dat=%3Celsevier_osti_%3ES0921509312016152%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0921509312016152&rfr_iscdi=true |