Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction

Due to its large band gap (3.2 eV), TiO2 cannot absorb sun light effectively. To reduce its band gap, various approaches have been attempted; most of them are using doping to modify its band structure. Using first-principles band structure calculations, we show that unlike the rutile phases, the ban...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2010-05, Vol.96 (22)
Hauptverfasser: Yin, Wan-Jian, Chen, Shiyou, Yang, Ji-Hui, Gong, Xin-Gao, Yan, Yanfa, Wei, Su-Huai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 22
container_start_page
container_title Applied physics letters
container_volume 96
creator Yin, Wan-Jian
Chen, Shiyou
Yang, Ji-Hui
Gong, Xin-Gao
Yan, Yanfa
Wei, Su-Huai
description Due to its large band gap (3.2 eV), TiO2 cannot absorb sun light effectively. To reduce its band gap, various approaches have been attempted; most of them are using doping to modify its band structure. Using first-principles band structure calculations, we show that unlike the rutile phases, the band gap of TiO2 in the anatase phase can be effectively reduced by applying stress along a soft direction. We propose that this approach of tuning the band gap by applying stress along soft direction of a layered semiconductor is general and should be applicable to other anisotropic materials.
doi_str_mv 10.1063/1.3430005
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1054390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_3430005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-5931cfe942d669ce88f5644ddc82e722a41386aa459c50355de9da3168bc6f793</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKsH_0Hw5mFrkneT3Ryl1A8o9NKel7f5qJGalCQo_fduaU8DMw_DMIQ8cjbjTMELn0ELjDF5RSacdV0DnPfXZDJa0Cgt-S25K-X7RAiACdksvHemhl9Htxgt3eGBRsw5_YW4o8lTjFixOLoOK0G3R1pqxhAp7tOYIy3JV2rysVTcUxvyqSvFe3LjcV_cw0WnZPO2WM8_muXq_XP-umwMCFEbqYEb73QrrFLauL73UrWttaYXrhMCWw69QmylNpKBlNZpi8BVvzXKdxqm5Oncm0oNQzGhOvNlUozjjIEz2YJmI_R8hkxOpWTnh0MOP5iPIzGcThv4cDkN_gG6fF1R</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Yin, Wan-Jian ; Chen, Shiyou ; Yang, Ji-Hui ; Gong, Xin-Gao ; Yan, Yanfa ; Wei, Su-Huai</creator><creatorcontrib>Yin, Wan-Jian ; Chen, Shiyou ; Yang, Ji-Hui ; Gong, Xin-Gao ; Yan, Yanfa ; Wei, Su-Huai ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>Due to its large band gap (3.2 eV), TiO2 cannot absorb sun light effectively. To reduce its band gap, various approaches have been attempted; most of them are using doping to modify its band structure. Using first-principles band structure calculations, we show that unlike the rutile phases, the band gap of TiO2 in the anatase phase can be effectively reduced by applying stress along a soft direction. We propose that this approach of tuning the band gap by applying stress along soft direction of a layered semiconductor is general and should be applicable to other anisotropic materials.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.3430005</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>chemical stability ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; MATERIALS SCIENCE ; photocatalytic ; photovoltaics ; solar ; SOLAR ENERGY ; TiO2</subject><ispartof>Applied physics letters, 2010-05, Vol.96 (22)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-5931cfe942d669ce88f5644ddc82e722a41386aa459c50355de9da3168bc6f793</citedby><cites>FETCH-LOGICAL-c322t-5931cfe942d669ce88f5644ddc82e722a41386aa459c50355de9da3168bc6f793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1054390$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Wan-Jian</creatorcontrib><creatorcontrib>Chen, Shiyou</creatorcontrib><creatorcontrib>Yang, Ji-Hui</creatorcontrib><creatorcontrib>Gong, Xin-Gao</creatorcontrib><creatorcontrib>Yan, Yanfa</creatorcontrib><creatorcontrib>Wei, Su-Huai</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction</title><title>Applied physics letters</title><description>Due to its large band gap (3.2 eV), TiO2 cannot absorb sun light effectively. To reduce its band gap, various approaches have been attempted; most of them are using doping to modify its band structure. Using first-principles band structure calculations, we show that unlike the rutile phases, the band gap of TiO2 in the anatase phase can be effectively reduced by applying stress along a soft direction. We propose that this approach of tuning the band gap by applying stress along soft direction of a layered semiconductor is general and should be applicable to other anisotropic materials.</description><subject>chemical stability</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>MATERIALS SCIENCE</subject><subject>photocatalytic</subject><subject>photovoltaics</subject><subject>solar</subject><subject>SOLAR ENERGY</subject><subject>TiO2</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEYhIMoWKsH_0Hw5mFrkneT3Ryl1A8o9NKel7f5qJGalCQo_fduaU8DMw_DMIQ8cjbjTMELn0ELjDF5RSacdV0DnPfXZDJa0Cgt-S25K-X7RAiACdksvHemhl9Htxgt3eGBRsw5_YW4o8lTjFixOLoOK0G3R1pqxhAp7tOYIy3JV2rysVTcUxvyqSvFe3LjcV_cw0WnZPO2WM8_muXq_XP-umwMCFEbqYEb73QrrFLauL73UrWttaYXrhMCWw69QmylNpKBlNZpi8BVvzXKdxqm5Oncm0oNQzGhOvNlUozjjIEz2YJmI_R8hkxOpWTnh0MOP5iPIzGcThv4cDkN_gG6fF1R</recordid><startdate>20100531</startdate><enddate>20100531</enddate><creator>Yin, Wan-Jian</creator><creator>Chen, Shiyou</creator><creator>Yang, Ji-Hui</creator><creator>Gong, Xin-Gao</creator><creator>Yan, Yanfa</creator><creator>Wei, Su-Huai</creator><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20100531</creationdate><title>Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction</title><author>Yin, Wan-Jian ; Chen, Shiyou ; Yang, Ji-Hui ; Gong, Xin-Gao ; Yan, Yanfa ; Wei, Su-Huai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-5931cfe942d669ce88f5644ddc82e722a41386aa459c50355de9da3168bc6f793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>chemical stability</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>MATERIALS SCIENCE</topic><topic>photocatalytic</topic><topic>photovoltaics</topic><topic>solar</topic><topic>SOLAR ENERGY</topic><topic>TiO2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Wan-Jian</creatorcontrib><creatorcontrib>Chen, Shiyou</creatorcontrib><creatorcontrib>Yang, Ji-Hui</creatorcontrib><creatorcontrib>Gong, Xin-Gao</creatorcontrib><creatorcontrib>Yan, Yanfa</creatorcontrib><creatorcontrib>Wei, Su-Huai</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Wan-Jian</au><au>Chen, Shiyou</au><au>Yang, Ji-Hui</au><au>Gong, Xin-Gao</au><au>Yan, Yanfa</au><au>Wei, Su-Huai</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction</atitle><jtitle>Applied physics letters</jtitle><date>2010-05-31</date><risdate>2010</risdate><volume>96</volume><issue>22</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Due to its large band gap (3.2 eV), TiO2 cannot absorb sun light effectively. To reduce its band gap, various approaches have been attempted; most of them are using doping to modify its band structure. Using first-principles band structure calculations, we show that unlike the rutile phases, the band gap of TiO2 in the anatase phase can be effectively reduced by applying stress along a soft direction. We propose that this approach of tuning the band gap by applying stress along soft direction of a layered semiconductor is general and should be applicable to other anisotropic materials.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><doi>10.1063/1.3430005</doi></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2010-05, Vol.96 (22)
issn 0003-6951
1077-3118
language eng
recordid cdi_osti_scitechconnect_1054390
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects chemical stability
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
MATERIALS SCIENCE
photocatalytic
photovoltaics
solar
SOLAR ENERGY
TiO2
title Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A04%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20band%20gap%20narrowing%20of%20anatase%20TiO2%20by%20strain%20along%20a%20soft%20crystal%20direction&rft.jtitle=Applied%20physics%20letters&rft.au=Yin,%20Wan-Jian&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2010-05-31&rft.volume=96&rft.issue=22&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.3430005&rft_dat=%3Ccrossref_osti_%3E10_1063_1_3430005%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true