Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction
Due to its large band gap (3.2 eV), TiO2 cannot absorb sun light effectively. To reduce its band gap, various approaches have been attempted; most of them are using doping to modify its band structure. Using first-principles band structure calculations, we show that unlike the rutile phases, the ban...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2010-05, Vol.96 (22) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 22 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 96 |
creator | Yin, Wan-Jian Chen, Shiyou Yang, Ji-Hui Gong, Xin-Gao Yan, Yanfa Wei, Su-Huai |
description | Due to its large band gap (3.2 eV), TiO2 cannot absorb sun light effectively. To reduce its band gap, various approaches have been attempted; most of them are using doping to modify its band structure. Using first-principles band structure calculations, we show that unlike the rutile phases, the band gap of TiO2 in the anatase phase can be effectively reduced by applying stress along a soft direction. We propose that this approach of tuning the band gap by applying stress along soft direction of a layered semiconductor is general and should be applicable to other anisotropic materials. |
doi_str_mv | 10.1063/1.3430005 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1054390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_1_3430005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-5931cfe942d669ce88f5644ddc82e722a41386aa459c50355de9da3168bc6f793</originalsourceid><addsrcrecordid>eNotkE1LAzEYhIMoWKsH_0Hw5mFrkneT3Ryl1A8o9NKel7f5qJGalCQo_fduaU8DMw_DMIQ8cjbjTMELn0ELjDF5RSacdV0DnPfXZDJa0Cgt-S25K-X7RAiACdksvHemhl9Htxgt3eGBRsw5_YW4o8lTjFixOLoOK0G3R1pqxhAp7tOYIy3JV2rysVTcUxvyqSvFe3LjcV_cw0WnZPO2WM8_muXq_XP-umwMCFEbqYEb73QrrFLauL73UrWttaYXrhMCWw69QmylNpKBlNZpi8BVvzXKdxqm5Oncm0oNQzGhOvNlUozjjIEz2YJmI_R8hkxOpWTnh0MOP5iPIzGcThv4cDkN_gG6fF1R</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Yin, Wan-Jian ; Chen, Shiyou ; Yang, Ji-Hui ; Gong, Xin-Gao ; Yan, Yanfa ; Wei, Su-Huai</creator><creatorcontrib>Yin, Wan-Jian ; Chen, Shiyou ; Yang, Ji-Hui ; Gong, Xin-Gao ; Yan, Yanfa ; Wei, Su-Huai ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>Due to its large band gap (3.2 eV), TiO2 cannot absorb sun light effectively. To reduce its band gap, various approaches have been attempted; most of them are using doping to modify its band structure. Using first-principles band structure calculations, we show that unlike the rutile phases, the band gap of TiO2 in the anatase phase can be effectively reduced by applying stress along a soft direction. We propose that this approach of tuning the band gap by applying stress along soft direction of a layered semiconductor is general and should be applicable to other anisotropic materials.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.3430005</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>chemical stability ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; MATERIALS SCIENCE ; photocatalytic ; photovoltaics ; solar ; SOLAR ENERGY ; TiO2</subject><ispartof>Applied physics letters, 2010-05, Vol.96 (22)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-5931cfe942d669ce88f5644ddc82e722a41386aa459c50355de9da3168bc6f793</citedby><cites>FETCH-LOGICAL-c322t-5931cfe942d669ce88f5644ddc82e722a41386aa459c50355de9da3168bc6f793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1054390$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Wan-Jian</creatorcontrib><creatorcontrib>Chen, Shiyou</creatorcontrib><creatorcontrib>Yang, Ji-Hui</creatorcontrib><creatorcontrib>Gong, Xin-Gao</creatorcontrib><creatorcontrib>Yan, Yanfa</creatorcontrib><creatorcontrib>Wei, Su-Huai</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction</title><title>Applied physics letters</title><description>Due to its large band gap (3.2 eV), TiO2 cannot absorb sun light effectively. To reduce its band gap, various approaches have been attempted; most of them are using doping to modify its band structure. Using first-principles band structure calculations, we show that unlike the rutile phases, the band gap of TiO2 in the anatase phase can be effectively reduced by applying stress along a soft direction. We propose that this approach of tuning the band gap by applying stress along soft direction of a layered semiconductor is general and should be applicable to other anisotropic materials.</description><subject>chemical stability</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>MATERIALS SCIENCE</subject><subject>photocatalytic</subject><subject>photovoltaics</subject><subject>solar</subject><subject>SOLAR ENERGY</subject><subject>TiO2</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEYhIMoWKsH_0Hw5mFrkneT3Ryl1A8o9NKel7f5qJGalCQo_fduaU8DMw_DMIQ8cjbjTMELn0ELjDF5RSacdV0DnPfXZDJa0Cgt-S25K-X7RAiACdksvHemhl9Htxgt3eGBRsw5_YW4o8lTjFixOLoOK0G3R1pqxhAp7tOYIy3JV2rysVTcUxvyqSvFe3LjcV_cw0WnZPO2WM8_muXq_XP-umwMCFEbqYEb73QrrFLauL73UrWttaYXrhMCWw69QmylNpKBlNZpi8BVvzXKdxqm5Oncm0oNQzGhOvNlUozjjIEz2YJmI_R8hkxOpWTnh0MOP5iPIzGcThv4cDkN_gG6fF1R</recordid><startdate>20100531</startdate><enddate>20100531</enddate><creator>Yin, Wan-Jian</creator><creator>Chen, Shiyou</creator><creator>Yang, Ji-Hui</creator><creator>Gong, Xin-Gao</creator><creator>Yan, Yanfa</creator><creator>Wei, Su-Huai</creator><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20100531</creationdate><title>Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction</title><author>Yin, Wan-Jian ; Chen, Shiyou ; Yang, Ji-Hui ; Gong, Xin-Gao ; Yan, Yanfa ; Wei, Su-Huai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-5931cfe942d669ce88f5644ddc82e722a41386aa459c50355de9da3168bc6f793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>chemical stability</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>MATERIALS SCIENCE</topic><topic>photocatalytic</topic><topic>photovoltaics</topic><topic>solar</topic><topic>SOLAR ENERGY</topic><topic>TiO2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Wan-Jian</creatorcontrib><creatorcontrib>Chen, Shiyou</creatorcontrib><creatorcontrib>Yang, Ji-Hui</creatorcontrib><creatorcontrib>Gong, Xin-Gao</creatorcontrib><creatorcontrib>Yan, Yanfa</creatorcontrib><creatorcontrib>Wei, Su-Huai</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Wan-Jian</au><au>Chen, Shiyou</au><au>Yang, Ji-Hui</au><au>Gong, Xin-Gao</au><au>Yan, Yanfa</au><au>Wei, Su-Huai</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction</atitle><jtitle>Applied physics letters</jtitle><date>2010-05-31</date><risdate>2010</risdate><volume>96</volume><issue>22</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Due to its large band gap (3.2 eV), TiO2 cannot absorb sun light effectively. To reduce its band gap, various approaches have been attempted; most of them are using doping to modify its band structure. Using first-principles band structure calculations, we show that unlike the rutile phases, the band gap of TiO2 in the anatase phase can be effectively reduced by applying stress along a soft direction. We propose that this approach of tuning the band gap by applying stress along soft direction of a layered semiconductor is general and should be applicable to other anisotropic materials.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><doi>10.1063/1.3430005</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2010-05, Vol.96 (22) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_osti_scitechconnect_1054390 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | chemical stability CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS MATERIALS SCIENCE photocatalytic photovoltaics solar SOLAR ENERGY TiO2 |
title | Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A04%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20band%20gap%20narrowing%20of%20anatase%20TiO2%20by%20strain%20along%20a%20soft%20crystal%20direction&rft.jtitle=Applied%20physics%20letters&rft.au=Yin,%20Wan-Jian&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2010-05-31&rft.volume=96&rft.issue=22&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.3430005&rft_dat=%3Ccrossref_osti_%3E10_1063_1_3430005%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |