Modification of Defect Structures in Graphene by Electron Irradiation: Ab Initio Molecular Dynamics Simulations

Defects play an important role on the unique properties of the sp2-bonded materials, such as graphene. The creation and evolution of monovacancy, divacancy, Stone-Wales (SW), and grain boundaries (GBs) under irradiation in graphene are investigated using density functional theory and time-dependent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2012-08, Vol.116 (30), p.16070-16079
Hauptverfasser: Wang, Zhiguo, Zhou, Y.G, Bang, Junhyeok, Prange, M.P, Zhang, S.B, Gao, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16079
container_issue 30
container_start_page 16070
container_title Journal of physical chemistry. C
container_volume 116
creator Wang, Zhiguo
Zhou, Y.G
Bang, Junhyeok
Prange, M.P
Zhang, S.B
Gao, Fei
description Defects play an important role on the unique properties of the sp2-bonded materials, such as graphene. The creation and evolution of monovacancy, divacancy, Stone-Wales (SW), and grain boundaries (GBs) under irradiation in graphene are investigated using density functional theory and time-dependent density functional theory molecular dynamics simulations. It is of great interest that the patterns of these defects can be controlled through electron irradiation. The SW defects can be created by electron irradiation with energy above the displacement threshold energy (T d, ∼19 eV) and can be healed with an energy (14–18 eV) lower than T d. The transformation between four types of divacanciesV2(5–8–5), V2(555–777), V2(5555–6–7777), and V2(55–77)can be realized through bond rotation induced by electron irradiation. The migrations of divancancies, SW defects, and GBs can also be controlled by electron irradiation. Thus, electron irradiation can serve as an important tool to modify morphology in a controllable manner and to tailor the physical properties of graphene.
doi_str_mv 10.1021/jp303905u
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1051191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b752558017</sourcerecordid><originalsourceid>FETCH-LOGICAL-a382t-ee5b7fc3ce2d696573aad2cb5b7ddb86f27e30a95eed4f903fee2a244cb7a40c3</originalsourceid><addsrcrecordid>eNpt0L1OwzAQAOAIgUQpDLyBhcTAEPBPnDRsVVtKpVYMhTm6OGfVVWpXdjL07XEpKgvTne6-O9mXJPeMPjPK2ct2L6goqewvkgErBU-LTMrLc54V18lNCFtKpaBMDBK3co3RRkFnnCVOkylqVB1Zd75XXe8xEGPJ3MN-gxZJfSCzNvZ9xAvvoTE_g69kXJOFNTEnKxdB34In04OFnVGBrM0uFo4w3CZXGtqAd79xmHy9zT4n7-nyY76YjJcpiBHvUkRZF1oJhbzJy1wWAqDhqo7VpqlHueYFCgqlRGwyXVKhETnwLFN1ARlVYpg8nPa60JkqKNOh2ihnbXx8xahkrGQRPZ2Q8i4Ej7rae7MDf4iiOp6zOp8z2seT3UNQ0GoPVplwHuA554xx-edAhWrrem_jN__Z9w0HK4L5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modification of Defect Structures in Graphene by Electron Irradiation: Ab Initio Molecular Dynamics Simulations</title><source>ACS Publications</source><creator>Wang, Zhiguo ; Zhou, Y.G ; Bang, Junhyeok ; Prange, M.P ; Zhang, S.B ; Gao, Fei</creator><creatorcontrib>Wang, Zhiguo ; Zhou, Y.G ; Bang, Junhyeok ; Prange, M.P ; Zhang, S.B ; Gao, Fei ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>Defects play an important role on the unique properties of the sp2-bonded materials, such as graphene. The creation and evolution of monovacancy, divacancy, Stone-Wales (SW), and grain boundaries (GBs) under irradiation in graphene are investigated using density functional theory and time-dependent density functional theory molecular dynamics simulations. It is of great interest that the patterns of these defects can be controlled through electron irradiation. The SW defects can be created by electron irradiation with energy above the displacement threshold energy (T d, ∼19 eV) and can be healed with an energy (14–18 eV) lower than T d. The transformation between four types of divacanciesV2(5–8–5), V2(555–777), V2(5555–6–7777), and V2(55–77)can be realized through bond rotation induced by electron irradiation. The migrations of divancancies, SW defects, and GBs can also be controlled by electron irradiation. Thus, electron irradiation can serve as an important tool to modify morphology in a controllable manner and to tailor the physical properties of graphene.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp303905u</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; DEFECTS ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; ELECTRONS ; Electrons and positron radiation effects ; Environmental Molecular Sciences Laboratory ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; FUNCTIONALS ; GRAIN BOUNDARIES ; Graphene, Defects, Electron irradiation ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; IRRADIATION ; Materials science ; MODIFICATIONS ; MORPHOLOGY ; PHYSICAL PROPERTIES ; Physical radiation effects, radiation damage ; Physics ; ROTATION ; Specific materials ; Structure and morphology; thickness ; Structure of solids and liquids; crystallography ; Surface and interface electron states ; Surface states, band structure, electron density of states ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film structure and morphology ; THRESHOLD ENERGY ; TRANSFORMATIONS</subject><ispartof>Journal of physical chemistry. C, 2012-08, Vol.116 (30), p.16070-16079</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a382t-ee5b7fc3ce2d696573aad2cb5b7ddb86f27e30a95eed4f903fee2a244cb7a40c3</citedby><cites>FETCH-LOGICAL-a382t-ee5b7fc3ce2d696573aad2cb5b7ddb86f27e30a95eed4f903fee2a244cb7a40c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp303905u$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp303905u$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26221125$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1051191$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zhiguo</creatorcontrib><creatorcontrib>Zhou, Y.G</creatorcontrib><creatorcontrib>Bang, Junhyeok</creatorcontrib><creatorcontrib>Prange, M.P</creatorcontrib><creatorcontrib>Zhang, S.B</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Modification of Defect Structures in Graphene by Electron Irradiation: Ab Initio Molecular Dynamics Simulations</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Defects play an important role on the unique properties of the sp2-bonded materials, such as graphene. The creation and evolution of monovacancy, divacancy, Stone-Wales (SW), and grain boundaries (GBs) under irradiation in graphene are investigated using density functional theory and time-dependent density functional theory molecular dynamics simulations. It is of great interest that the patterns of these defects can be controlled through electron irradiation. The SW defects can be created by electron irradiation with energy above the displacement threshold energy (T d, ∼19 eV) and can be healed with an energy (14–18 eV) lower than T d. The transformation between four types of divacanciesV2(5–8–5), V2(555–777), V2(5555–6–7777), and V2(55–77)can be realized through bond rotation induced by electron irradiation. The migrations of divancancies, SW defects, and GBs can also be controlled by electron irradiation. Thus, electron irradiation can serve as an important tool to modify morphology in a controllable manner and to tailor the physical properties of graphene.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>DEFECTS</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>ELECTRONS</subject><subject>Electrons and positron radiation effects</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>FUNCTIONALS</subject><subject>GRAIN BOUNDARIES</subject><subject>Graphene, Defects, Electron irradiation</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>IRRADIATION</subject><subject>Materials science</subject><subject>MODIFICATIONS</subject><subject>MORPHOLOGY</subject><subject>PHYSICAL PROPERTIES</subject><subject>Physical radiation effects, radiation damage</subject><subject>Physics</subject><subject>ROTATION</subject><subject>Specific materials</subject><subject>Structure and morphology; thickness</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Surface and interface electron states</subject><subject>Surface states, band structure, electron density of states</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film structure and morphology</subject><subject>THRESHOLD ENERGY</subject><subject>TRANSFORMATIONS</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpt0L1OwzAQAOAIgUQpDLyBhcTAEPBPnDRsVVtKpVYMhTm6OGfVVWpXdjL07XEpKgvTne6-O9mXJPeMPjPK2ct2L6goqewvkgErBU-LTMrLc54V18lNCFtKpaBMDBK3co3RRkFnnCVOkylqVB1Zd75XXe8xEGPJ3MN-gxZJfSCzNvZ9xAvvoTE_g69kXJOFNTEnKxdB34In04OFnVGBrM0uFo4w3CZXGtqAd79xmHy9zT4n7-nyY76YjJcpiBHvUkRZF1oJhbzJy1wWAqDhqo7VpqlHueYFCgqlRGwyXVKhETnwLFN1ARlVYpg8nPa60JkqKNOh2ihnbXx8xahkrGQRPZ2Q8i4Ej7rae7MDf4iiOp6zOp8z2seT3UNQ0GoPVplwHuA554xx-edAhWrrem_jN__Z9w0HK4L5</recordid><startdate>20120802</startdate><enddate>20120802</enddate><creator>Wang, Zhiguo</creator><creator>Zhou, Y.G</creator><creator>Bang, Junhyeok</creator><creator>Prange, M.P</creator><creator>Zhang, S.B</creator><creator>Gao, Fei</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20120802</creationdate><title>Modification of Defect Structures in Graphene by Electron Irradiation: Ab Initio Molecular Dynamics Simulations</title><author>Wang, Zhiguo ; Zhou, Y.G ; Bang, Junhyeok ; Prange, M.P ; Zhang, S.B ; Gao, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a382t-ee5b7fc3ce2d696573aad2cb5b7ddb86f27e30a95eed4f903fee2a244cb7a40c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>DEFECTS</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>ELECTRONS</topic><topic>Electrons and positron radiation effects</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>FUNCTIONALS</topic><topic>GRAIN BOUNDARIES</topic><topic>Graphene, Defects, Electron irradiation</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>IRRADIATION</topic><topic>Materials science</topic><topic>MODIFICATIONS</topic><topic>MORPHOLOGY</topic><topic>PHYSICAL PROPERTIES</topic><topic>Physical radiation effects, radiation damage</topic><topic>Physics</topic><topic>ROTATION</topic><topic>Specific materials</topic><topic>Structure and morphology; thickness</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Surface and interface electron states</topic><topic>Surface states, band structure, electron density of states</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film structure and morphology</topic><topic>THRESHOLD ENERGY</topic><topic>TRANSFORMATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhiguo</creatorcontrib><creatorcontrib>Zhou, Y.G</creatorcontrib><creatorcontrib>Bang, Junhyeok</creatorcontrib><creatorcontrib>Prange, M.P</creatorcontrib><creatorcontrib>Zhang, S.B</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhiguo</au><au>Zhou, Y.G</au><au>Bang, Junhyeok</au><au>Prange, M.P</au><au>Zhang, S.B</au><au>Gao, Fei</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modification of Defect Structures in Graphene by Electron Irradiation: Ab Initio Molecular Dynamics Simulations</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2012-08-02</date><risdate>2012</risdate><volume>116</volume><issue>30</issue><spage>16070</spage><epage>16079</epage><pages>16070-16079</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Defects play an important role on the unique properties of the sp2-bonded materials, such as graphene. The creation and evolution of monovacancy, divacancy, Stone-Wales (SW), and grain boundaries (GBs) under irradiation in graphene are investigated using density functional theory and time-dependent density functional theory molecular dynamics simulations. It is of great interest that the patterns of these defects can be controlled through electron irradiation. The SW defects can be created by electron irradiation with energy above the displacement threshold energy (T d, ∼19 eV) and can be healed with an energy (14–18 eV) lower than T d. The transformation between four types of divacanciesV2(5–8–5), V2(555–777), V2(5555–6–7777), and V2(55–77)can be realized through bond rotation induced by electron irradiation. The migrations of divancancies, SW defects, and GBs can also be controlled by electron irradiation. Thus, electron irradiation can serve as an important tool to modify morphology in a controllable manner and to tailor the physical properties of graphene.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp303905u</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2012-08, Vol.116 (30), p.16070-16079
issn 1932-7447
1932-7455
language eng
recordid cdi_osti_scitechconnect_1051191
source ACS Publications
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
DEFECTS
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
ELECTRONS
Electrons and positron radiation effects
Environmental Molecular Sciences Laboratory
Exact sciences and technology
Fullerenes and related materials
diamonds, graphite
FUNCTIONALS
GRAIN BOUNDARIES
Graphene, Defects, Electron irradiation
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
IRRADIATION
Materials science
MODIFICATIONS
MORPHOLOGY
PHYSICAL PROPERTIES
Physical radiation effects, radiation damage
Physics
ROTATION
Specific materials
Structure and morphology
thickness
Structure of solids and liquids
crystallography
Surface and interface electron states
Surface states, band structure, electron density of states
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Thin film structure and morphology
THRESHOLD ENERGY
TRANSFORMATIONS
title Modification of Defect Structures in Graphene by Electron Irradiation: Ab Initio Molecular Dynamics Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A06%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modification%20of%20Defect%20Structures%20in%20Graphene%20by%20Electron%20Irradiation:%20Ab%20Initio%20Molecular%20Dynamics%20Simulations&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Wang,%20Zhiguo&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2012-08-02&rft.volume=116&rft.issue=30&rft.spage=16070&rft.epage=16079&rft.pages=16070-16079&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp303905u&rft_dat=%3Cacs_osti_%3Eb752558017%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true