Modification of Defect Structures in Graphene by Electron Irradiation: Ab Initio Molecular Dynamics Simulations
Defects play an important role on the unique properties of the sp2-bonded materials, such as graphene. The creation and evolution of monovacancy, divacancy, Stone-Wales (SW), and grain boundaries (GBs) under irradiation in graphene are investigated using density functional theory and time-dependent...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2012-08, Vol.116 (30), p.16070-16079 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16079 |
---|---|
container_issue | 30 |
container_start_page | 16070 |
container_title | Journal of physical chemistry. C |
container_volume | 116 |
creator | Wang, Zhiguo Zhou, Y.G Bang, Junhyeok Prange, M.P Zhang, S.B Gao, Fei |
description | Defects play an important role on the unique properties of the sp2-bonded materials, such as graphene. The creation and evolution of monovacancy, divacancy, Stone-Wales (SW), and grain boundaries (GBs) under irradiation in graphene are investigated using density functional theory and time-dependent density functional theory molecular dynamics simulations. It is of great interest that the patterns of these defects can be controlled through electron irradiation. The SW defects can be created by electron irradiation with energy above the displacement threshold energy (T d, ∼19 eV) and can be healed with an energy (14–18 eV) lower than T d. The transformation between four types of divacanciesV2(5–8–5), V2(555–777), V2(5555–6–7777), and V2(55–77)can be realized through bond rotation induced by electron irradiation. The migrations of divancancies, SW defects, and GBs can also be controlled by electron irradiation. Thus, electron irradiation can serve as an important tool to modify morphology in a controllable manner and to tailor the physical properties of graphene. |
doi_str_mv | 10.1021/jp303905u |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1051191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b752558017</sourcerecordid><originalsourceid>FETCH-LOGICAL-a382t-ee5b7fc3ce2d696573aad2cb5b7ddb86f27e30a95eed4f903fee2a244cb7a40c3</originalsourceid><addsrcrecordid>eNpt0L1OwzAQAOAIgUQpDLyBhcTAEPBPnDRsVVtKpVYMhTm6OGfVVWpXdjL07XEpKgvTne6-O9mXJPeMPjPK2ct2L6goqewvkgErBU-LTMrLc54V18lNCFtKpaBMDBK3co3RRkFnnCVOkylqVB1Zd75XXe8xEGPJ3MN-gxZJfSCzNvZ9xAvvoTE_g69kXJOFNTEnKxdB34In04OFnVGBrM0uFo4w3CZXGtqAd79xmHy9zT4n7-nyY76YjJcpiBHvUkRZF1oJhbzJy1wWAqDhqo7VpqlHueYFCgqlRGwyXVKhETnwLFN1ARlVYpg8nPa60JkqKNOh2ihnbXx8xahkrGQRPZ2Q8i4Ej7rae7MDf4iiOp6zOp8z2seT3UNQ0GoPVplwHuA554xx-edAhWrrem_jN__Z9w0HK4L5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modification of Defect Structures in Graphene by Electron Irradiation: Ab Initio Molecular Dynamics Simulations</title><source>ACS Publications</source><creator>Wang, Zhiguo ; Zhou, Y.G ; Bang, Junhyeok ; Prange, M.P ; Zhang, S.B ; Gao, Fei</creator><creatorcontrib>Wang, Zhiguo ; Zhou, Y.G ; Bang, Junhyeok ; Prange, M.P ; Zhang, S.B ; Gao, Fei ; Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><description>Defects play an important role on the unique properties of the sp2-bonded materials, such as graphene. The creation and evolution of monovacancy, divacancy, Stone-Wales (SW), and grain boundaries (GBs) under irradiation in graphene are investigated using density functional theory and time-dependent density functional theory molecular dynamics simulations. It is of great interest that the patterns of these defects can be controlled through electron irradiation. The SW defects can be created by electron irradiation with energy above the displacement threshold energy (T d, ∼19 eV) and can be healed with an energy (14–18 eV) lower than T d. The transformation between four types of divacanciesV2(5–8–5), V2(555–777), V2(5555–6–7777), and V2(55–77)can be realized through bond rotation induced by electron irradiation. The migrations of divancancies, SW defects, and GBs can also be controlled by electron irradiation. Thus, electron irradiation can serve as an important tool to modify morphology in a controllable manner and to tailor the physical properties of graphene.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp303905u</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; DEFECTS ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; ELECTRONS ; Electrons and positron radiation effects ; Environmental Molecular Sciences Laboratory ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; FUNCTIONALS ; GRAIN BOUNDARIES ; Graphene, Defects, Electron irradiation ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; IRRADIATION ; Materials science ; MODIFICATIONS ; MORPHOLOGY ; PHYSICAL PROPERTIES ; Physical radiation effects, radiation damage ; Physics ; ROTATION ; Specific materials ; Structure and morphology; thickness ; Structure of solids and liquids; crystallography ; Surface and interface electron states ; Surface states, band structure, electron density of states ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thin film structure and morphology ; THRESHOLD ENERGY ; TRANSFORMATIONS</subject><ispartof>Journal of physical chemistry. C, 2012-08, Vol.116 (30), p.16070-16079</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a382t-ee5b7fc3ce2d696573aad2cb5b7ddb86f27e30a95eed4f903fee2a244cb7a40c3</citedby><cites>FETCH-LOGICAL-a382t-ee5b7fc3ce2d696573aad2cb5b7ddb86f27e30a95eed4f903fee2a244cb7a40c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp303905u$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp303905u$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26221125$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1051191$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Zhiguo</creatorcontrib><creatorcontrib>Zhou, Y.G</creatorcontrib><creatorcontrib>Bang, Junhyeok</creatorcontrib><creatorcontrib>Prange, M.P</creatorcontrib><creatorcontrib>Zhang, S.B</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><title>Modification of Defect Structures in Graphene by Electron Irradiation: Ab Initio Molecular Dynamics Simulations</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Defects play an important role on the unique properties of the sp2-bonded materials, such as graphene. The creation and evolution of monovacancy, divacancy, Stone-Wales (SW), and grain boundaries (GBs) under irradiation in graphene are investigated using density functional theory and time-dependent density functional theory molecular dynamics simulations. It is of great interest that the patterns of these defects can be controlled through electron irradiation. The SW defects can be created by electron irradiation with energy above the displacement threshold energy (T d, ∼19 eV) and can be healed with an energy (14–18 eV) lower than T d. The transformation between four types of divacanciesV2(5–8–5), V2(555–777), V2(5555–6–7777), and V2(55–77)can be realized through bond rotation induced by electron irradiation. The migrations of divancancies, SW defects, and GBs can also be controlled by electron irradiation. Thus, electron irradiation can serve as an important tool to modify morphology in a controllable manner and to tailor the physical properties of graphene.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>DEFECTS</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>ELECTRONS</subject><subject>Electrons and positron radiation effects</subject><subject>Environmental Molecular Sciences Laboratory</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>FUNCTIONALS</subject><subject>GRAIN BOUNDARIES</subject><subject>Graphene, Defects, Electron irradiation</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>IRRADIATION</subject><subject>Materials science</subject><subject>MODIFICATIONS</subject><subject>MORPHOLOGY</subject><subject>PHYSICAL PROPERTIES</subject><subject>Physical radiation effects, radiation damage</subject><subject>Physics</subject><subject>ROTATION</subject><subject>Specific materials</subject><subject>Structure and morphology; thickness</subject><subject>Structure of solids and liquids; crystallography</subject><subject>Surface and interface electron states</subject><subject>Surface states, band structure, electron density of states</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thin film structure and morphology</subject><subject>THRESHOLD ENERGY</subject><subject>TRANSFORMATIONS</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpt0L1OwzAQAOAIgUQpDLyBhcTAEPBPnDRsVVtKpVYMhTm6OGfVVWpXdjL07XEpKgvTne6-O9mXJPeMPjPK2ct2L6goqewvkgErBU-LTMrLc54V18lNCFtKpaBMDBK3co3RRkFnnCVOkylqVB1Zd75XXe8xEGPJ3MN-gxZJfSCzNvZ9xAvvoTE_g69kXJOFNTEnKxdB34In04OFnVGBrM0uFo4w3CZXGtqAd79xmHy9zT4n7-nyY76YjJcpiBHvUkRZF1oJhbzJy1wWAqDhqo7VpqlHueYFCgqlRGwyXVKhETnwLFN1ARlVYpg8nPa60JkqKNOh2ihnbXx8xahkrGQRPZ2Q8i4Ej7rae7MDf4iiOp6zOp8z2seT3UNQ0GoPVplwHuA554xx-edAhWrrem_jN__Z9w0HK4L5</recordid><startdate>20120802</startdate><enddate>20120802</enddate><creator>Wang, Zhiguo</creator><creator>Zhou, Y.G</creator><creator>Bang, Junhyeok</creator><creator>Prange, M.P</creator><creator>Zhang, S.B</creator><creator>Gao, Fei</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20120802</creationdate><title>Modification of Defect Structures in Graphene by Electron Irradiation: Ab Initio Molecular Dynamics Simulations</title><author>Wang, Zhiguo ; Zhou, Y.G ; Bang, Junhyeok ; Prange, M.P ; Zhang, S.B ; Gao, Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a382t-ee5b7fc3ce2d696573aad2cb5b7ddb86f27e30a95eed4f903fee2a244cb7a40c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>DEFECTS</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>ELECTRONS</topic><topic>Electrons and positron radiation effects</topic><topic>Environmental Molecular Sciences Laboratory</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>FUNCTIONALS</topic><topic>GRAIN BOUNDARIES</topic><topic>Graphene, Defects, Electron irradiation</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>IRRADIATION</topic><topic>Materials science</topic><topic>MODIFICATIONS</topic><topic>MORPHOLOGY</topic><topic>PHYSICAL PROPERTIES</topic><topic>Physical radiation effects, radiation damage</topic><topic>Physics</topic><topic>ROTATION</topic><topic>Specific materials</topic><topic>Structure and morphology; thickness</topic><topic>Structure of solids and liquids; crystallography</topic><topic>Surface and interface electron states</topic><topic>Surface states, band structure, electron density of states</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thin film structure and morphology</topic><topic>THRESHOLD ENERGY</topic><topic>TRANSFORMATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhiguo</creatorcontrib><creatorcontrib>Zhou, Y.G</creatorcontrib><creatorcontrib>Bang, Junhyeok</creatorcontrib><creatorcontrib>Prange, M.P</creatorcontrib><creatorcontrib>Zhang, S.B</creatorcontrib><creatorcontrib>Gao, Fei</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhiguo</au><au>Zhou, Y.G</au><au>Bang, Junhyeok</au><au>Prange, M.P</au><au>Zhang, S.B</au><au>Gao, Fei</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modification of Defect Structures in Graphene by Electron Irradiation: Ab Initio Molecular Dynamics Simulations</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2012-08-02</date><risdate>2012</risdate><volume>116</volume><issue>30</issue><spage>16070</spage><epage>16079</epage><pages>16070-16079</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Defects play an important role on the unique properties of the sp2-bonded materials, such as graphene. The creation and evolution of monovacancy, divacancy, Stone-Wales (SW), and grain boundaries (GBs) under irradiation in graphene are investigated using density functional theory and time-dependent density functional theory molecular dynamics simulations. It is of great interest that the patterns of these defects can be controlled through electron irradiation. The SW defects can be created by electron irradiation with energy above the displacement threshold energy (T d, ∼19 eV) and can be healed with an energy (14–18 eV) lower than T d. The transformation between four types of divacanciesV2(5–8–5), V2(555–777), V2(5555–6–7777), and V2(55–77)can be realized through bond rotation induced by electron irradiation. The migrations of divancancies, SW defects, and GBs can also be controlled by electron irradiation. Thus, electron irradiation can serve as an important tool to modify morphology in a controllable manner and to tailor the physical properties of graphene.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp303905u</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2012-08, Vol.116 (30), p.16070-16079 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_osti_scitechconnect_1051191 |
source | ACS Publications |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology DEFECTS Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ELECTRONS Electrons and positron radiation effects Environmental Molecular Sciences Laboratory Exact sciences and technology Fullerenes and related materials diamonds, graphite FUNCTIONALS GRAIN BOUNDARIES Graphene, Defects, Electron irradiation INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY IRRADIATION Materials science MODIFICATIONS MORPHOLOGY PHYSICAL PROPERTIES Physical radiation effects, radiation damage Physics ROTATION Specific materials Structure and morphology thickness Structure of solids and liquids crystallography Surface and interface electron states Surface states, band structure, electron density of states Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Thin film structure and morphology THRESHOLD ENERGY TRANSFORMATIONS |
title | Modification of Defect Structures in Graphene by Electron Irradiation: Ab Initio Molecular Dynamics Simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A06%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modification%20of%20Defect%20Structures%20in%20Graphene%20by%20Electron%20Irradiation:%20Ab%20Initio%20Molecular%20Dynamics%20Simulations&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Wang,%20Zhiguo&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(US),%20Environmental%20Molecular%20Sciences%20Laboratory%20(EMSL)&rft.date=2012-08-02&rft.volume=116&rft.issue=30&rft.spage=16070&rft.epage=16079&rft.pages=16070-16079&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp303905u&rft_dat=%3Cacs_osti_%3Eb752558017%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |