Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development
Summary Acetoacetyl CoA thiolase (AACT, EC 2.3.1.9) catalyzes the condensation of two acetyl CoA molecules to form acetoacetyl CoA. Two AACT‐encoding genes, At5g47720 (AACT1) and At5g48230 (AACT2), were functionally identified in the Arabidopsis genome by direct enzymological assays and functional e...
Gespeichert in:
Veröffentlicht in: | The Plant journal : for cell and molecular biology 2012-06, Vol.70 (6), p.1015-1032 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1032 |
---|---|
container_issue | 6 |
container_start_page | 1015 |
container_title | The Plant journal : for cell and molecular biology |
container_volume | 70 |
creator | Jin, Huanan Song, Zhihong Nikolau, Basil J. |
description | Summary
Acetoacetyl CoA thiolase (AACT, EC 2.3.1.9) catalyzes the condensation of two acetyl CoA molecules to form acetoacetyl CoA. Two AACT‐encoding genes, At5g47720 (AACT1) and At5g48230 (AACT2), were functionally identified in the Arabidopsis genome by direct enzymological assays and functional expression in yeast. Promoter::GUS fusion experiments indicated that AACT1 is primarily expressed in the vascular system and AACT2 is highly expressed in root tips, young leaves, top stems and anthers. Characterization of T‐DNA insertion mutant alleles at each AACT locus established that AACT2 function is required for embryogenesis and for normal male gamete transmission. In contrast, plants lacking AACT1 function are completely viable and show no apparent growth phenotypes, indicating that AACT1 is functionally redundant with respect to AACT2 function. RNAi lines that express reduced levels of AACT2 show pleiotropic phenotypes, including reduced apical dominance, elongated life span and flowering duration, sterility, dwarfing, reduced seed yield and shorter root length. Microscopic analysis reveals that the reduced stature is caused by a reduction in cell size and fewer cells, and male sterility is caused by loss of the pollen coat and premature degeneration of the tapetal cells. Biochemical analyses established that the roots of AACT2 RNAi plants show quantitative and qualitative alterations in phytosterol profiles. These phenotypes and biochemical alterations are reversed when AACT2 RNAi plants are grown in the presence of mevalonate, which is consistent with the role of AACT2 in generating the bulk of the acetoacetyl CoA precursor required for the cytosol‐localized, mevalonate‐derived isoprenoid biosynthetic pathway. |
doi_str_mv | 10.1111/j.1365-313X.2012.04942.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1047727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2684170081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4542-2fe45a67d2fc6a27d23960381859f25215709f631e3206145bb501181fa8359a3</originalsourceid><addsrcrecordid>eNqN0cuO0zAUBmALgZgy8ArIAo3EJsGXOJcFi6riqpFAaJDYWa5z0rpK4mC7dMqb8Lac0DJIrMgitpLv2D7-CaGc5Ryfl7ucy1JlksuvuWBc5KxoCpHf3iOLux_3yYI1JcuqgosL8ijGHWO8kmXxkFwIIaWoebkgPz_DdwgR6AZGSM5SuzXB2ATB_TDJ-ZH6jqaDpxN-7v3G7yM1FpKfX8eervySpq3zvTmvEakb6TKYtWv9FF2kATcwfUQFLlA3TD4kM1qY3dSbMdFN8Ie0pWZsaYu499MAY3pMHnRYB0_O4yX58ub1zepddv3x7fvV8jqzhSpEJjoolCmrVnS2NAJHiV3Lmteq6YQSXFWs6UrJQQpW8kKt14pxXvPO1FI1Rl6SZ6d1fUxOR-sS2K314wg2ac6KqhIVohcnNAX_bQ8x6cFFCz2eH_BK0GEMdVMWAunzf-jO78OILaDiTV1x1tSo6pOywccYoNNTcIMJR0R6zljv9BylnqPUc8b6d8b6FkufnjfYrwdo7wr_hIrg6gxMtKbvAl63i3-dairFmrmpVyd3cD0c__sA-ubTh3kmfwETTsMK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019871098</pqid></control><display><type>article</type><title>Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library All Journals</source><creator>Jin, Huanan ; Song, Zhihong ; Nikolau, Basil J.</creator><creatorcontrib>Jin, Huanan ; Song, Zhihong ; Nikolau, Basil J. ; Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><description>Summary
Acetoacetyl CoA thiolase (AACT, EC 2.3.1.9) catalyzes the condensation of two acetyl CoA molecules to form acetoacetyl CoA. Two AACT‐encoding genes, At5g47720 (AACT1) and At5g48230 (AACT2), were functionally identified in the Arabidopsis genome by direct enzymological assays and functional expression in yeast. Promoter::GUS fusion experiments indicated that AACT1 is primarily expressed in the vascular system and AACT2 is highly expressed in root tips, young leaves, top stems and anthers. Characterization of T‐DNA insertion mutant alleles at each AACT locus established that AACT2 function is required for embryogenesis and for normal male gamete transmission. In contrast, plants lacking AACT1 function are completely viable and show no apparent growth phenotypes, indicating that AACT1 is functionally redundant with respect to AACT2 function. RNAi lines that express reduced levels of AACT2 show pleiotropic phenotypes, including reduced apical dominance, elongated life span and flowering duration, sterility, dwarfing, reduced seed yield and shorter root length. Microscopic analysis reveals that the reduced stature is caused by a reduction in cell size and fewer cells, and male sterility is caused by loss of the pollen coat and premature degeneration of the tapetal cells. Biochemical analyses established that the roots of AACT2 RNAi plants show quantitative and qualitative alterations in phytosterol profiles. These phenotypes and biochemical alterations are reversed when AACT2 RNAi plants are grown in the presence of mevalonate, which is consistent with the role of AACT2 in generating the bulk of the acetoacetyl CoA precursor required for the cytosol‐localized, mevalonate‐derived isoprenoid biosynthetic pathway.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/j.1365-313X.2012.04942.x</identifier><identifier>PMID: 22332816</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>acetoacetyl CoA thiolases ; Acetyl-CoA C-Acetyltransferase - genetics ; Acetyl-CoA C-Acetyltransferase - metabolism ; Arabidopsis - genetics ; Arabidopsis - growth & development ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Biochemistry ; Biological and medical sciences ; Biosynthesis ; Cell differentiation, maturation, development, hematopoiesis ; Cell physiology ; DNA, Bacterial ; embryo lethality ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Plant ; Genes, Essential ; Genetic Complementation Test ; Genetics ; MATERIALS SCIENCE ; mevalonate pathway ; Molecular and cellular biology ; Mutagenesis, Insertional ; phytosterol ; Plant biology ; Plant growth ; Plant physiology and development ; pleiotropic phenotypes ; RNA Interference ; Yeast</subject><ispartof>The Plant journal : for cell and molecular biology, 2012-06, Vol.70 (6), p.1015-1032</ispartof><rights>2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4542-2fe45a67d2fc6a27d23960381859f25215709f631e3206145bb501181fa8359a3</citedby><cites>FETCH-LOGICAL-c4542-2fe45a67d2fc6a27d23960381859f25215709f631e3206145bb501181fa8359a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-313X.2012.04942.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-313X.2012.04942.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,1432,27922,27923,45572,45573,46407,46831</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25975097$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22332816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1047727$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Huanan</creatorcontrib><creatorcontrib>Song, Zhihong</creatorcontrib><creatorcontrib>Nikolau, Basil J.</creatorcontrib><creatorcontrib>Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><title>Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Summary
Acetoacetyl CoA thiolase (AACT, EC 2.3.1.9) catalyzes the condensation of two acetyl CoA molecules to form acetoacetyl CoA. Two AACT‐encoding genes, At5g47720 (AACT1) and At5g48230 (AACT2), were functionally identified in the Arabidopsis genome by direct enzymological assays and functional expression in yeast. Promoter::GUS fusion experiments indicated that AACT1 is primarily expressed in the vascular system and AACT2 is highly expressed in root tips, young leaves, top stems and anthers. Characterization of T‐DNA insertion mutant alleles at each AACT locus established that AACT2 function is required for embryogenesis and for normal male gamete transmission. In contrast, plants lacking AACT1 function are completely viable and show no apparent growth phenotypes, indicating that AACT1 is functionally redundant with respect to AACT2 function. RNAi lines that express reduced levels of AACT2 show pleiotropic phenotypes, including reduced apical dominance, elongated life span and flowering duration, sterility, dwarfing, reduced seed yield and shorter root length. Microscopic analysis reveals that the reduced stature is caused by a reduction in cell size and fewer cells, and male sterility is caused by loss of the pollen coat and premature degeneration of the tapetal cells. Biochemical analyses established that the roots of AACT2 RNAi plants show quantitative and qualitative alterations in phytosterol profiles. These phenotypes and biochemical alterations are reversed when AACT2 RNAi plants are grown in the presence of mevalonate, which is consistent with the role of AACT2 in generating the bulk of the acetoacetyl CoA precursor required for the cytosol‐localized, mevalonate‐derived isoprenoid biosynthetic pathway.</description><subject>acetoacetyl CoA thiolases</subject><subject>Acetyl-CoA C-Acetyltransferase - genetics</subject><subject>Acetyl-CoA C-Acetyltransferase - metabolism</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth & development</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Biosynthesis</subject><subject>Cell differentiation, maturation, development, hematopoiesis</subject><subject>Cell physiology</subject><subject>DNA, Bacterial</subject><subject>embryo lethality</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes, Essential</subject><subject>Genetic Complementation Test</subject><subject>Genetics</subject><subject>MATERIALS SCIENCE</subject><subject>mevalonate pathway</subject><subject>Molecular and cellular biology</subject><subject>Mutagenesis, Insertional</subject><subject>phytosterol</subject><subject>Plant biology</subject><subject>Plant growth</subject><subject>Plant physiology and development</subject><subject>pleiotropic phenotypes</subject><subject>RNA Interference</subject><subject>Yeast</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0cuO0zAUBmALgZgy8ArIAo3EJsGXOJcFi6riqpFAaJDYWa5z0rpK4mC7dMqb8Lac0DJIrMgitpLv2D7-CaGc5Ryfl7ucy1JlksuvuWBc5KxoCpHf3iOLux_3yYI1JcuqgosL8ijGHWO8kmXxkFwIIaWoebkgPz_DdwgR6AZGSM5SuzXB2ATB_TDJ-ZH6jqaDpxN-7v3G7yM1FpKfX8eervySpq3zvTmvEakb6TKYtWv9FF2kATcwfUQFLlA3TD4kM1qY3dSbMdFN8Ie0pWZsaYu499MAY3pMHnRYB0_O4yX58ub1zepddv3x7fvV8jqzhSpEJjoolCmrVnS2NAJHiV3Lmteq6YQSXFWs6UrJQQpW8kKt14pxXvPO1FI1Rl6SZ6d1fUxOR-sS2K314wg2ac6KqhIVohcnNAX_bQ8x6cFFCz2eH_BK0GEMdVMWAunzf-jO78OILaDiTV1x1tSo6pOywccYoNNTcIMJR0R6zljv9BylnqPUc8b6d8b6FkufnjfYrwdo7wr_hIrg6gxMtKbvAl63i3-dairFmrmpVyd3cD0c__sA-ubTh3kmfwETTsMK</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Jin, Huanan</creator><creator>Song, Zhihong</creator><creator>Nikolau, Basil J.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Society for Experimental Biology</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>201206</creationdate><title>Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development</title><author>Jin, Huanan ; Song, Zhihong ; Nikolau, Basil J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4542-2fe45a67d2fc6a27d23960381859f25215709f631e3206145bb501181fa8359a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>acetoacetyl CoA thiolases</topic><topic>Acetyl-CoA C-Acetyltransferase - genetics</topic><topic>Acetyl-CoA C-Acetyltransferase - metabolism</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth & development</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Biosynthesis</topic><topic>Cell differentiation, maturation, development, hematopoiesis</topic><topic>Cell physiology</topic><topic>DNA, Bacterial</topic><topic>embryo lethality</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes, Essential</topic><topic>Genetic Complementation Test</topic><topic>Genetics</topic><topic>MATERIALS SCIENCE</topic><topic>mevalonate pathway</topic><topic>Molecular and cellular biology</topic><topic>Mutagenesis, Insertional</topic><topic>phytosterol</topic><topic>Plant biology</topic><topic>Plant growth</topic><topic>Plant physiology and development</topic><topic>pleiotropic phenotypes</topic><topic>RNA Interference</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Huanan</creatorcontrib><creatorcontrib>Song, Zhihong</creatorcontrib><creatorcontrib>Nikolau, Basil J.</creatorcontrib><creatorcontrib>Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Huanan</au><au>Song, Zhihong</au><au>Nikolau, Basil J.</au><aucorp>Ames Laboratory (AMES), Ames, IA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2012-06</date><risdate>2012</risdate><volume>70</volume><issue>6</issue><spage>1015</spage><epage>1032</epage><pages>1015-1032</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary
Acetoacetyl CoA thiolase (AACT, EC 2.3.1.9) catalyzes the condensation of two acetyl CoA molecules to form acetoacetyl CoA. Two AACT‐encoding genes, At5g47720 (AACT1) and At5g48230 (AACT2), were functionally identified in the Arabidopsis genome by direct enzymological assays and functional expression in yeast. Promoter::GUS fusion experiments indicated that AACT1 is primarily expressed in the vascular system and AACT2 is highly expressed in root tips, young leaves, top stems and anthers. Characterization of T‐DNA insertion mutant alleles at each AACT locus established that AACT2 function is required for embryogenesis and for normal male gamete transmission. In contrast, plants lacking AACT1 function are completely viable and show no apparent growth phenotypes, indicating that AACT1 is functionally redundant with respect to AACT2 function. RNAi lines that express reduced levels of AACT2 show pleiotropic phenotypes, including reduced apical dominance, elongated life span and flowering duration, sterility, dwarfing, reduced seed yield and shorter root length. Microscopic analysis reveals that the reduced stature is caused by a reduction in cell size and fewer cells, and male sterility is caused by loss of the pollen coat and premature degeneration of the tapetal cells. Biochemical analyses established that the roots of AACT2 RNAi plants show quantitative and qualitative alterations in phytosterol profiles. These phenotypes and biochemical alterations are reversed when AACT2 RNAi plants are grown in the presence of mevalonate, which is consistent with the role of AACT2 in generating the bulk of the acetoacetyl CoA precursor required for the cytosol‐localized, mevalonate‐derived isoprenoid biosynthetic pathway.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22332816</pmid><doi>10.1111/j.1365-313X.2012.04942.x</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7412 |
ispartof | The Plant journal : for cell and molecular biology, 2012-06, Vol.70 (6), p.1015-1032 |
issn | 0960-7412 1365-313X |
language | eng |
recordid | cdi_osti_scitechconnect_1047727 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; IngentaConnect Free/Open Access Journals; Wiley Online Library All Journals |
subjects | acetoacetyl CoA thiolases Acetyl-CoA C-Acetyltransferase - genetics Acetyl-CoA C-Acetyltransferase - metabolism Arabidopsis - genetics Arabidopsis - growth & development Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana Biochemistry Biological and medical sciences Biosynthesis Cell differentiation, maturation, development, hematopoiesis Cell physiology DNA, Bacterial embryo lethality Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Plant Genes, Essential Genetic Complementation Test Genetics MATERIALS SCIENCE mevalonate pathway Molecular and cellular biology Mutagenesis, Insertional phytosterol Plant biology Plant growth Plant physiology and development pleiotropic phenotypes RNA Interference Yeast |
title | Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A31%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reverse%20genetic%20characterization%20of%20two%20paralogous%20acetoacetyl%20CoA%20thiolase%20genes%20in%20Arabidopsis%20reveals%20their%20importance%20in%20plant%20growth%20and%20development&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Jin,%20Huanan&rft.aucorp=Ames%20Laboratory%20(AMES),%20Ames,%20IA%20(United%20States)&rft.date=2012-06&rft.volume=70&rft.issue=6&rft.spage=1015&rft.epage=1032&rft.pages=1015-1032&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/j.1365-313X.2012.04942.x&rft_dat=%3Cproquest_osti_%3E2684170081%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019871098&rft_id=info:pmid/22332816&rfr_iscdi=true |