Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development

Summary Acetoacetyl CoA thiolase (AACT, EC 2.3.1.9) catalyzes the condensation of two acetyl CoA molecules to form acetoacetyl CoA. Two AACT‐encoding genes, At5g47720 (AACT1) and At5g48230 (AACT2), were functionally identified in the Arabidopsis genome by direct enzymological assays and functional e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2012-06, Vol.70 (6), p.1015-1032
Hauptverfasser: Jin, Huanan, Song, Zhihong, Nikolau, Basil J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1032
container_issue 6
container_start_page 1015
container_title The Plant journal : for cell and molecular biology
container_volume 70
creator Jin, Huanan
Song, Zhihong
Nikolau, Basil J.
description Summary Acetoacetyl CoA thiolase (AACT, EC 2.3.1.9) catalyzes the condensation of two acetyl CoA molecules to form acetoacetyl CoA. Two AACT‐encoding genes, At5g47720 (AACT1) and At5g48230 (AACT2), were functionally identified in the Arabidopsis genome by direct enzymological assays and functional expression in yeast. Promoter::GUS fusion experiments indicated that AACT1 is primarily expressed in the vascular system and AACT2 is highly expressed in root tips, young leaves, top stems and anthers. Characterization of T‐DNA insertion mutant alleles at each AACT locus established that AACT2 function is required for embryogenesis and for normal male gamete transmission. In contrast, plants lacking AACT1 function are completely viable and show no apparent growth phenotypes, indicating that AACT1 is functionally redundant with respect to AACT2 function. RNAi lines that express reduced levels of AACT2 show pleiotropic phenotypes, including reduced apical dominance, elongated life span and flowering duration, sterility, dwarfing, reduced seed yield and shorter root length. Microscopic analysis reveals that the reduced stature is caused by a reduction in cell size and fewer cells, and male sterility is caused by loss of the pollen coat and premature degeneration of the tapetal cells. Biochemical analyses established that the roots of AACT2 RNAi plants show quantitative and qualitative alterations in phytosterol profiles. These phenotypes and biochemical alterations are reversed when AACT2 RNAi plants are grown in the presence of mevalonate, which is consistent with the role of AACT2 in generating the bulk of the acetoacetyl CoA precursor required for the cytosol‐localized, mevalonate‐derived isoprenoid biosynthetic pathway.
doi_str_mv 10.1111/j.1365-313X.2012.04942.x
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1047727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2684170081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4542-2fe45a67d2fc6a27d23960381859f25215709f631e3206145bb501181fa8359a3</originalsourceid><addsrcrecordid>eNqN0cuO0zAUBmALgZgy8ArIAo3EJsGXOJcFi6riqpFAaJDYWa5z0rpK4mC7dMqb8Lac0DJIrMgitpLv2D7-CaGc5Ryfl7ucy1JlksuvuWBc5KxoCpHf3iOLux_3yYI1JcuqgosL8ijGHWO8kmXxkFwIIaWoebkgPz_DdwgR6AZGSM5SuzXB2ATB_TDJ-ZH6jqaDpxN-7v3G7yM1FpKfX8eervySpq3zvTmvEakb6TKYtWv9FF2kATcwfUQFLlA3TD4kM1qY3dSbMdFN8Ie0pWZsaYu499MAY3pMHnRYB0_O4yX58ub1zepddv3x7fvV8jqzhSpEJjoolCmrVnS2NAJHiV3Lmteq6YQSXFWs6UrJQQpW8kKt14pxXvPO1FI1Rl6SZ6d1fUxOR-sS2K314wg2ac6KqhIVohcnNAX_bQ8x6cFFCz2eH_BK0GEMdVMWAunzf-jO78OILaDiTV1x1tSo6pOywccYoNNTcIMJR0R6zljv9BylnqPUc8b6d8b6FkufnjfYrwdo7wr_hIrg6gxMtKbvAl63i3-dairFmrmpVyd3cD0c__sA-ubTh3kmfwETTsMK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019871098</pqid></control><display><type>article</type><title>Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library All Journals</source><creator>Jin, Huanan ; Song, Zhihong ; Nikolau, Basil J.</creator><creatorcontrib>Jin, Huanan ; Song, Zhihong ; Nikolau, Basil J. ; Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><description>Summary Acetoacetyl CoA thiolase (AACT, EC 2.3.1.9) catalyzes the condensation of two acetyl CoA molecules to form acetoacetyl CoA. Two AACT‐encoding genes, At5g47720 (AACT1) and At5g48230 (AACT2), were functionally identified in the Arabidopsis genome by direct enzymological assays and functional expression in yeast. Promoter::GUS fusion experiments indicated that AACT1 is primarily expressed in the vascular system and AACT2 is highly expressed in root tips, young leaves, top stems and anthers. Characterization of T‐DNA insertion mutant alleles at each AACT locus established that AACT2 function is required for embryogenesis and for normal male gamete transmission. In contrast, plants lacking AACT1 function are completely viable and show no apparent growth phenotypes, indicating that AACT1 is functionally redundant with respect to AACT2 function. RNAi lines that express reduced levels of AACT2 show pleiotropic phenotypes, including reduced apical dominance, elongated life span and flowering duration, sterility, dwarfing, reduced seed yield and shorter root length. Microscopic analysis reveals that the reduced stature is caused by a reduction in cell size and fewer cells, and male sterility is caused by loss of the pollen coat and premature degeneration of the tapetal cells. Biochemical analyses established that the roots of AACT2 RNAi plants show quantitative and qualitative alterations in phytosterol profiles. These phenotypes and biochemical alterations are reversed when AACT2 RNAi plants are grown in the presence of mevalonate, which is consistent with the role of AACT2 in generating the bulk of the acetoacetyl CoA precursor required for the cytosol‐localized, mevalonate‐derived isoprenoid biosynthetic pathway.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/j.1365-313X.2012.04942.x</identifier><identifier>PMID: 22332816</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>acetoacetyl CoA thiolases ; Acetyl-CoA C-Acetyltransferase - genetics ; Acetyl-CoA C-Acetyltransferase - metabolism ; Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Biochemistry ; Biological and medical sciences ; Biosynthesis ; Cell differentiation, maturation, development, hematopoiesis ; Cell physiology ; DNA, Bacterial ; embryo lethality ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Plant ; Genes, Essential ; Genetic Complementation Test ; Genetics ; MATERIALS SCIENCE ; mevalonate pathway ; Molecular and cellular biology ; Mutagenesis, Insertional ; phytosterol ; Plant biology ; Plant growth ; Plant physiology and development ; pleiotropic phenotypes ; RNA Interference ; Yeast</subject><ispartof>The Plant journal : for cell and molecular biology, 2012-06, Vol.70 (6), p.1015-1032</ispartof><rights>2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><rights>2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4542-2fe45a67d2fc6a27d23960381859f25215709f631e3206145bb501181fa8359a3</citedby><cites>FETCH-LOGICAL-c4542-2fe45a67d2fc6a27d23960381859f25215709f631e3206145bb501181fa8359a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-313X.2012.04942.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-313X.2012.04942.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,1432,27922,27923,45572,45573,46407,46831</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25975097$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22332816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1047727$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Huanan</creatorcontrib><creatorcontrib>Song, Zhihong</creatorcontrib><creatorcontrib>Nikolau, Basil J.</creatorcontrib><creatorcontrib>Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><title>Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Summary Acetoacetyl CoA thiolase (AACT, EC 2.3.1.9) catalyzes the condensation of two acetyl CoA molecules to form acetoacetyl CoA. Two AACT‐encoding genes, At5g47720 (AACT1) and At5g48230 (AACT2), were functionally identified in the Arabidopsis genome by direct enzymological assays and functional expression in yeast. Promoter::GUS fusion experiments indicated that AACT1 is primarily expressed in the vascular system and AACT2 is highly expressed in root tips, young leaves, top stems and anthers. Characterization of T‐DNA insertion mutant alleles at each AACT locus established that AACT2 function is required for embryogenesis and for normal male gamete transmission. In contrast, plants lacking AACT1 function are completely viable and show no apparent growth phenotypes, indicating that AACT1 is functionally redundant with respect to AACT2 function. RNAi lines that express reduced levels of AACT2 show pleiotropic phenotypes, including reduced apical dominance, elongated life span and flowering duration, sterility, dwarfing, reduced seed yield and shorter root length. Microscopic analysis reveals that the reduced stature is caused by a reduction in cell size and fewer cells, and male sterility is caused by loss of the pollen coat and premature degeneration of the tapetal cells. Biochemical analyses established that the roots of AACT2 RNAi plants show quantitative and qualitative alterations in phytosterol profiles. These phenotypes and biochemical alterations are reversed when AACT2 RNAi plants are grown in the presence of mevalonate, which is consistent with the role of AACT2 in generating the bulk of the acetoacetyl CoA precursor required for the cytosol‐localized, mevalonate‐derived isoprenoid biosynthetic pathway.</description><subject>acetoacetyl CoA thiolases</subject><subject>Acetyl-CoA C-Acetyltransferase - genetics</subject><subject>Acetyl-CoA C-Acetyltransferase - metabolism</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Biosynthesis</subject><subject>Cell differentiation, maturation, development, hematopoiesis</subject><subject>Cell physiology</subject><subject>DNA, Bacterial</subject><subject>embryo lethality</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes, Essential</subject><subject>Genetic Complementation Test</subject><subject>Genetics</subject><subject>MATERIALS SCIENCE</subject><subject>mevalonate pathway</subject><subject>Molecular and cellular biology</subject><subject>Mutagenesis, Insertional</subject><subject>phytosterol</subject><subject>Plant biology</subject><subject>Plant growth</subject><subject>Plant physiology and development</subject><subject>pleiotropic phenotypes</subject><subject>RNA Interference</subject><subject>Yeast</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0cuO0zAUBmALgZgy8ArIAo3EJsGXOJcFi6riqpFAaJDYWa5z0rpK4mC7dMqb8Lac0DJIrMgitpLv2D7-CaGc5Ryfl7ucy1JlksuvuWBc5KxoCpHf3iOLux_3yYI1JcuqgosL8ijGHWO8kmXxkFwIIaWoebkgPz_DdwgR6AZGSM5SuzXB2ATB_TDJ-ZH6jqaDpxN-7v3G7yM1FpKfX8eervySpq3zvTmvEakb6TKYtWv9FF2kATcwfUQFLlA3TD4kM1qY3dSbMdFN8Ie0pWZsaYu499MAY3pMHnRYB0_O4yX58ub1zepddv3x7fvV8jqzhSpEJjoolCmrVnS2NAJHiV3Lmteq6YQSXFWs6UrJQQpW8kKt14pxXvPO1FI1Rl6SZ6d1fUxOR-sS2K314wg2ac6KqhIVohcnNAX_bQ8x6cFFCz2eH_BK0GEMdVMWAunzf-jO78OILaDiTV1x1tSo6pOywccYoNNTcIMJR0R6zljv9BylnqPUc8b6d8b6FkufnjfYrwdo7wr_hIrg6gxMtKbvAl63i3-dairFmrmpVyd3cD0c__sA-ubTh3kmfwETTsMK</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Jin, Huanan</creator><creator>Song, Zhihong</creator><creator>Nikolau, Basil J.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Society for Experimental Biology</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>201206</creationdate><title>Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development</title><author>Jin, Huanan ; Song, Zhihong ; Nikolau, Basil J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4542-2fe45a67d2fc6a27d23960381859f25215709f631e3206145bb501181fa8359a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>acetoacetyl CoA thiolases</topic><topic>Acetyl-CoA C-Acetyltransferase - genetics</topic><topic>Acetyl-CoA C-Acetyltransferase - metabolism</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Biosynthesis</topic><topic>Cell differentiation, maturation, development, hematopoiesis</topic><topic>Cell physiology</topic><topic>DNA, Bacterial</topic><topic>embryo lethality</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes, Essential</topic><topic>Genetic Complementation Test</topic><topic>Genetics</topic><topic>MATERIALS SCIENCE</topic><topic>mevalonate pathway</topic><topic>Molecular and cellular biology</topic><topic>Mutagenesis, Insertional</topic><topic>phytosterol</topic><topic>Plant biology</topic><topic>Plant growth</topic><topic>Plant physiology and development</topic><topic>pleiotropic phenotypes</topic><topic>RNA Interference</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Huanan</creatorcontrib><creatorcontrib>Song, Zhihong</creatorcontrib><creatorcontrib>Nikolau, Basil J.</creatorcontrib><creatorcontrib>Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Huanan</au><au>Song, Zhihong</au><au>Nikolau, Basil J.</au><aucorp>Ames Laboratory (AMES), Ames, IA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2012-06</date><risdate>2012</risdate><volume>70</volume><issue>6</issue><spage>1015</spage><epage>1032</epage><pages>1015-1032</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary Acetoacetyl CoA thiolase (AACT, EC 2.3.1.9) catalyzes the condensation of two acetyl CoA molecules to form acetoacetyl CoA. Two AACT‐encoding genes, At5g47720 (AACT1) and At5g48230 (AACT2), were functionally identified in the Arabidopsis genome by direct enzymological assays and functional expression in yeast. Promoter::GUS fusion experiments indicated that AACT1 is primarily expressed in the vascular system and AACT2 is highly expressed in root tips, young leaves, top stems and anthers. Characterization of T‐DNA insertion mutant alleles at each AACT locus established that AACT2 function is required for embryogenesis and for normal male gamete transmission. In contrast, plants lacking AACT1 function are completely viable and show no apparent growth phenotypes, indicating that AACT1 is functionally redundant with respect to AACT2 function. RNAi lines that express reduced levels of AACT2 show pleiotropic phenotypes, including reduced apical dominance, elongated life span and flowering duration, sterility, dwarfing, reduced seed yield and shorter root length. Microscopic analysis reveals that the reduced stature is caused by a reduction in cell size and fewer cells, and male sterility is caused by loss of the pollen coat and premature degeneration of the tapetal cells. Biochemical analyses established that the roots of AACT2 RNAi plants show quantitative and qualitative alterations in phytosterol profiles. These phenotypes and biochemical alterations are reversed when AACT2 RNAi plants are grown in the presence of mevalonate, which is consistent with the role of AACT2 in generating the bulk of the acetoacetyl CoA precursor required for the cytosol‐localized, mevalonate‐derived isoprenoid biosynthetic pathway.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22332816</pmid><doi>10.1111/j.1365-313X.2012.04942.x</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2012-06, Vol.70 (6), p.1015-1032
issn 0960-7412
1365-313X
language eng
recordid cdi_osti_scitechconnect_1047727
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; IngentaConnect Free/Open Access Journals; Wiley Online Library All Journals
subjects acetoacetyl CoA thiolases
Acetyl-CoA C-Acetyltransferase - genetics
Acetyl-CoA C-Acetyltransferase - metabolism
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Biochemistry
Biological and medical sciences
Biosynthesis
Cell differentiation, maturation, development, hematopoiesis
Cell physiology
DNA, Bacterial
embryo lethality
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Plant
Genes, Essential
Genetic Complementation Test
Genetics
MATERIALS SCIENCE
mevalonate pathway
Molecular and cellular biology
Mutagenesis, Insertional
phytosterol
Plant biology
Plant growth
Plant physiology and development
pleiotropic phenotypes
RNA Interference
Yeast
title Reverse genetic characterization of two paralogous acetoacetyl CoA thiolase genes in Arabidopsis reveals their importance in plant growth and development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A31%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reverse%20genetic%20characterization%20of%20two%20paralogous%20acetoacetyl%20CoA%20thiolase%20genes%20in%20Arabidopsis%20reveals%20their%20importance%20in%20plant%20growth%20and%20development&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Jin,%20Huanan&rft.aucorp=Ames%20Laboratory%20(AMES),%20Ames,%20IA%20(United%20States)&rft.date=2012-06&rft.volume=70&rft.issue=6&rft.spage=1015&rft.epage=1032&rft.pages=1015-1032&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/j.1365-313X.2012.04942.x&rft_dat=%3Cproquest_osti_%3E2684170081%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1019871098&rft_id=info:pmid/22332816&rfr_iscdi=true