Retrievals of cloud optical depth and effective radius from Thin-Cloud Rotating Shadowband Radiometer measurements

A Thin‐Cloud Rotating Shadowband Radiometer (TCRSR) was developed and deployed in a field test at the Atmospheric Radiation Measurement Climate Research Facility's Southern Great Plains site. The TCRSR measures the forward‐scattering lobe of the direct solar beam (i.e., the solar aureole) throu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research 2011-12, Vol.116 (D23), p.n/a
Hauptverfasser: Yin, Bangsheng, Min, Qilong, Duan, Minzheng, Bartholomew, M. J., Vogelmann, A. M., Turner, D. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue D23
container_start_page
container_title Journal of Geophysical Research
container_volume 116
creator Yin, Bangsheng
Min, Qilong
Duan, Minzheng
Bartholomew, M. J.
Vogelmann, A. M.
Turner, D. D.
description A Thin‐Cloud Rotating Shadowband Radiometer (TCRSR) was developed and deployed in a field test at the Atmospheric Radiation Measurement Climate Research Facility's Southern Great Plains site. The TCRSR measures the forward‐scattering lobe of the direct solar beam (i.e., the solar aureole) through an optically thin cloud (optical depth < 8). We applied the retrieval algorithm of Min and Duan (2005) to the TCRSR measurements of the solar aureole to derive simultaneously the cloud optical depth (COD) and cloud drop effective radius (DER), subsequently inferring the cloud liquid‐water path (LWP). After careful calibration and preprocessing, our results indicate that the TCRSR is able to retrieve simultaneously these three properties for optically thin water clouds. Colocated instruments, such as the MultiFilter Rotating Shadowband Radiometer (MFRSR), atmospheric emitted radiance interferometer (AERI), and Microwave Radiometer (MWR), are used to evaluate our retrieval results. The relative difference between retrieved CODs from the TCRSR and those from the MFRSR is less than 5%. The distribution of retrieved LWPs from the TCRSR is similar to those from the MWR and AERI. The differences between the TCRSR‐based retrieved DERs and those from the AERI are apparent in some time periods, and the uncertainties of the DER retrievals are discussed in detail in this article. Key Points TCRSR measures the forward‐scattering lobe of solar aureole through thin clouds TCRSR can retrieve simultaneously COD, Re, and LWP for thin water clouds The retrieved cloud properties showed agreement with other measurements
doi_str_mv 10.1029/2011JD016192
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1041619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547006951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4025-1aba5d0473210621ad223bb87bc4d5acfe2481818b6348c89d3e19501091bb213</originalsourceid><addsrcrecordid>eNpNkU1vEzEQQFcIJKLSGz_AQuK4MDO29-OIUhKoAkhpEdwsr9dLXLLrYHtb-u9xSFUYH-bg9zzjmaJ4ifAGgdq3BIiXF4AVtvSkWBDKqiQCelosAEVTAlH9vDiP8QZyCFkJwEURtjYFZ2_1PjI_MLP3c8_8ITmj96y3h7RjeuqZHQZrkru1LOjezZENwY_seuemcvlX2fqkk5t-sKud7v1dd5S2GfWjTTaw0eo4BzvaKcUXxbMhl7PnD_ms-Lp6f738UG6-rD8u321KI4BkibrTsgdRc0KoCHVPxLuuqTsjeqnNYEk0mE9XcdGYpu25xVYCQotdR8jPilend31MTkXjkjU746cp_0QhiOOk_kGH4H_NNiZ14-cw5b5UiyQFh5pn6PUDpGOeyxD0ZFxUh-BGHe5VxqCqCDLHT9yd29v7x3sEddyQ-n9D6nK9vcCaVzJb5clyMdnfj5YOP1VV81qqb5_XqqbNFX7_tFIr_geCwZME</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912543073</pqid></control><display><type>article</type><title>Retrievals of cloud optical depth and effective radius from Thin-Cloud Rotating Shadowband Radiometer measurements</title><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>Alma/SFX Local Collection</source><creator>Yin, Bangsheng ; Min, Qilong ; Duan, Minzheng ; Bartholomew, M. J. ; Vogelmann, A. M. ; Turner, D. D.</creator><creatorcontrib>Yin, Bangsheng ; Min, Qilong ; Duan, Minzheng ; Bartholomew, M. J. ; Vogelmann, A. M. ; Turner, D. D. ; BROOKHAVEN NATIONAL LABORATORY (BNL)</creatorcontrib><description>A Thin‐Cloud Rotating Shadowband Radiometer (TCRSR) was developed and deployed in a field test at the Atmospheric Radiation Measurement Climate Research Facility's Southern Great Plains site. The TCRSR measures the forward‐scattering lobe of the direct solar beam (i.e., the solar aureole) through an optically thin cloud (optical depth &lt; 8). We applied the retrieval algorithm of Min and Duan (2005) to the TCRSR measurements of the solar aureole to derive simultaneously the cloud optical depth (COD) and cloud drop effective radius (DER), subsequently inferring the cloud liquid‐water path (LWP). After careful calibration and preprocessing, our results indicate that the TCRSR is able to retrieve simultaneously these three properties for optically thin water clouds. Colocated instruments, such as the MultiFilter Rotating Shadowband Radiometer (MFRSR), atmospheric emitted radiance interferometer (AERI), and Microwave Radiometer (MWR), are used to evaluate our retrieval results. The relative difference between retrieved CODs from the TCRSR and those from the MFRSR is less than 5%. The distribution of retrieved LWPs from the TCRSR is similar to those from the MWR and AERI. The differences between the TCRSR‐based retrieved DERs and those from the AERI are apparent in some time periods, and the uncertainties of the DER retrievals are discussed in detail in this article. Key Points TCRSR measures the forward‐scattering lobe of solar aureole through thin clouds TCRSR can retrieve simultaneously COD, Re, and LWP for thin water clouds The retrieved cloud properties showed agreement with other measurements</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2011JD016192</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>ALGORITHMS ; Atmospheric sciences ; CALIBRATION ; CLIMATES ; CLOUDS ; DISTRIBUTION ; Earth sciences ; Earth, ocean, space ; effective radius ; ENVIRONMENTAL SCIENCES ; Exact sciences and technology ; FIELD TESTS ; forward scattering ; Geophysics ; INTERFEROMETERS ; liquid-water path ; Optical analysis ; optical depth ; optically thin cloud ; Radiation measurement ; RADIATIONS ; RADIOMETERS ; solar aureole ; WATER</subject><ispartof>Journal of Geophysical Research, 2011-12, Vol.116 (D23), p.n/a</ispartof><rights>Copyright 2011 by the American Geophysical Union</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2011 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4025-1aba5d0473210621ad223bb87bc4d5acfe2481818b6348c89d3e19501091bb213</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2011JD016192$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2011JD016192$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25406620$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1041619$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yin, Bangsheng</creatorcontrib><creatorcontrib>Min, Qilong</creatorcontrib><creatorcontrib>Duan, Minzheng</creatorcontrib><creatorcontrib>Bartholomew, M. J.</creatorcontrib><creatorcontrib>Vogelmann, A. M.</creatorcontrib><creatorcontrib>Turner, D. D.</creatorcontrib><creatorcontrib>BROOKHAVEN NATIONAL LABORATORY (BNL)</creatorcontrib><title>Retrievals of cloud optical depth and effective radius from Thin-Cloud Rotating Shadowband Radiometer measurements</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res</addtitle><description>A Thin‐Cloud Rotating Shadowband Radiometer (TCRSR) was developed and deployed in a field test at the Atmospheric Radiation Measurement Climate Research Facility's Southern Great Plains site. The TCRSR measures the forward‐scattering lobe of the direct solar beam (i.e., the solar aureole) through an optically thin cloud (optical depth &lt; 8). We applied the retrieval algorithm of Min and Duan (2005) to the TCRSR measurements of the solar aureole to derive simultaneously the cloud optical depth (COD) and cloud drop effective radius (DER), subsequently inferring the cloud liquid‐water path (LWP). After careful calibration and preprocessing, our results indicate that the TCRSR is able to retrieve simultaneously these three properties for optically thin water clouds. Colocated instruments, such as the MultiFilter Rotating Shadowband Radiometer (MFRSR), atmospheric emitted radiance interferometer (AERI), and Microwave Radiometer (MWR), are used to evaluate our retrieval results. The relative difference between retrieved CODs from the TCRSR and those from the MFRSR is less than 5%. The distribution of retrieved LWPs from the TCRSR is similar to those from the MWR and AERI. The differences between the TCRSR‐based retrieved DERs and those from the AERI are apparent in some time periods, and the uncertainties of the DER retrievals are discussed in detail in this article. Key Points TCRSR measures the forward‐scattering lobe of solar aureole through thin clouds TCRSR can retrieve simultaneously COD, Re, and LWP for thin water clouds The retrieved cloud properties showed agreement with other measurements</description><subject>ALGORITHMS</subject><subject>Atmospheric sciences</subject><subject>CALIBRATION</subject><subject>CLIMATES</subject><subject>CLOUDS</subject><subject>DISTRIBUTION</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>effective radius</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Exact sciences and technology</subject><subject>FIELD TESTS</subject><subject>forward scattering</subject><subject>Geophysics</subject><subject>INTERFEROMETERS</subject><subject>liquid-water path</subject><subject>Optical analysis</subject><subject>optical depth</subject><subject>optically thin cloud</subject><subject>Radiation measurement</subject><subject>RADIATIONS</subject><subject>RADIOMETERS</subject><subject>solar aureole</subject><subject>WATER</subject><issn>0148-0227</issn><issn>2169-897X</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpNkU1vEzEQQFcIJKLSGz_AQuK4MDO29-OIUhKoAkhpEdwsr9dLXLLrYHtb-u9xSFUYH-bg9zzjmaJ4ifAGgdq3BIiXF4AVtvSkWBDKqiQCelosAEVTAlH9vDiP8QZyCFkJwEURtjYFZ2_1PjI_MLP3c8_8ITmj96y3h7RjeuqZHQZrkru1LOjezZENwY_seuemcvlX2fqkk5t-sKud7v1dd5S2GfWjTTaw0eo4BzvaKcUXxbMhl7PnD_ms-Lp6f738UG6-rD8u321KI4BkibrTsgdRc0KoCHVPxLuuqTsjeqnNYEk0mE9XcdGYpu25xVYCQotdR8jPilend31MTkXjkjU746cp_0QhiOOk_kGH4H_NNiZ14-cw5b5UiyQFh5pn6PUDpGOeyxD0ZFxUh-BGHe5VxqCqCDLHT9yd29v7x3sEddyQ-n9D6nK9vcCaVzJb5clyMdnfj5YOP1VV81qqb5_XqqbNFX7_tFIr_geCwZME</recordid><startdate>20111216</startdate><enddate>20111216</enddate><creator>Yin, Bangsheng</creator><creator>Min, Qilong</creator><creator>Duan, Minzheng</creator><creator>Bartholomew, M. J.</creator><creator>Vogelmann, A. M.</creator><creator>Turner, D. D.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>OTOTI</scope></search><sort><creationdate>20111216</creationdate><title>Retrievals of cloud optical depth and effective radius from Thin-Cloud Rotating Shadowband Radiometer measurements</title><author>Yin, Bangsheng ; Min, Qilong ; Duan, Minzheng ; Bartholomew, M. J. ; Vogelmann, A. M. ; Turner, D. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4025-1aba5d0473210621ad223bb87bc4d5acfe2481818b6348c89d3e19501091bb213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ALGORITHMS</topic><topic>Atmospheric sciences</topic><topic>CALIBRATION</topic><topic>CLIMATES</topic><topic>CLOUDS</topic><topic>DISTRIBUTION</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>effective radius</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Exact sciences and technology</topic><topic>FIELD TESTS</topic><topic>forward scattering</topic><topic>Geophysics</topic><topic>INTERFEROMETERS</topic><topic>liquid-water path</topic><topic>Optical analysis</topic><topic>optical depth</topic><topic>optically thin cloud</topic><topic>Radiation measurement</topic><topic>RADIATIONS</topic><topic>RADIOMETERS</topic><topic>solar aureole</topic><topic>WATER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yin, Bangsheng</creatorcontrib><creatorcontrib>Min, Qilong</creatorcontrib><creatorcontrib>Duan, Minzheng</creatorcontrib><creatorcontrib>Bartholomew, M. J.</creatorcontrib><creatorcontrib>Vogelmann, A. M.</creatorcontrib><creatorcontrib>Turner, D. D.</creatorcontrib><creatorcontrib>BROOKHAVEN NATIONAL LABORATORY (BNL)</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Bangsheng</au><au>Min, Qilong</au><au>Duan, Minzheng</au><au>Bartholomew, M. J.</au><au>Vogelmann, A. M.</au><au>Turner, D. D.</au><aucorp>BROOKHAVEN NATIONAL LABORATORY (BNL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Retrievals of cloud optical depth and effective radius from Thin-Cloud Rotating Shadowband Radiometer measurements</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res</addtitle><date>2011-12-16</date><risdate>2011</risdate><volume>116</volume><issue>D23</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-897X</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>A Thin‐Cloud Rotating Shadowband Radiometer (TCRSR) was developed and deployed in a field test at the Atmospheric Radiation Measurement Climate Research Facility's Southern Great Plains site. The TCRSR measures the forward‐scattering lobe of the direct solar beam (i.e., the solar aureole) through an optically thin cloud (optical depth &lt; 8). We applied the retrieval algorithm of Min and Duan (2005) to the TCRSR measurements of the solar aureole to derive simultaneously the cloud optical depth (COD) and cloud drop effective radius (DER), subsequently inferring the cloud liquid‐water path (LWP). After careful calibration and preprocessing, our results indicate that the TCRSR is able to retrieve simultaneously these three properties for optically thin water clouds. Colocated instruments, such as the MultiFilter Rotating Shadowband Radiometer (MFRSR), atmospheric emitted radiance interferometer (AERI), and Microwave Radiometer (MWR), are used to evaluate our retrieval results. The relative difference between retrieved CODs from the TCRSR and those from the MFRSR is less than 5%. The distribution of retrieved LWPs from the TCRSR is similar to those from the MWR and AERI. The differences between the TCRSR‐based retrieved DERs and those from the AERI are apparent in some time periods, and the uncertainties of the DER retrievals are discussed in detail in this article. Key Points TCRSR measures the forward‐scattering lobe of solar aureole through thin clouds TCRSR can retrieve simultaneously COD, Re, and LWP for thin water clouds The retrieved cloud properties showed agreement with other measurements</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2011JD016192</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research, 2011-12, Vol.116 (D23), p.n/a
issn 0148-0227
2169-897X
2156-2202
2169-8996
language eng
recordid cdi_osti_scitechconnect_1041619
source Wiley Online Library Free Content; Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; Alma/SFX Local Collection
subjects ALGORITHMS
Atmospheric sciences
CALIBRATION
CLIMATES
CLOUDS
DISTRIBUTION
Earth sciences
Earth, ocean, space
effective radius
ENVIRONMENTAL SCIENCES
Exact sciences and technology
FIELD TESTS
forward scattering
Geophysics
INTERFEROMETERS
liquid-water path
Optical analysis
optical depth
optically thin cloud
Radiation measurement
RADIATIONS
RADIOMETERS
solar aureole
WATER
title Retrievals of cloud optical depth and effective radius from Thin-Cloud Rotating Shadowband Radiometer measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A52%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Retrievals%20of%20cloud%20optical%20depth%20and%20effective%20radius%20from%20Thin-Cloud%20Rotating%20Shadowband%20Radiometer%20measurements&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Yin,%20Bangsheng&rft.aucorp=BROOKHAVEN%20NATIONAL%20LABORATORY%20(BNL)&rft.date=2011-12-16&rft.volume=116&rft.issue=D23&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2011JD016192&rft_dat=%3Cproquest_osti_%3E2547006951%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=912543073&rft_id=info:pmid/&rfr_iscdi=true