Synchrotron Infrared Microspectroscopy Detecting the Evolution of Huntington’s Disease Neuropathology and Suggesting Unique Correlates of Dysfunction in White versus Gray Brain Matter
Huntington’s disease (HD), caused by a mutation of the corresponding gene encoding the protein huntingtin (htt), is characterized by progressive deterioration of cognitive and motor functions, paralleled by extensive loss of striatal neurons. At the cellular level, pathogenesis involves an early and...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2011-10, Vol.83 (20), p.7712-7720 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7720 |
---|---|
container_issue | 20 |
container_start_page | 7712 |
container_title | Analytical chemistry (Washington) |
container_volume | 83 |
creator | Bonda, Markus Perrin, Valérie Vileno, Bertrand Runne, Heike Kretlow, Ariane Forró, László Luthi-Carter, Ruth Miller, Lisa M Jeney, Sylvia |
description | Huntington’s disease (HD), caused by a mutation of the corresponding gene encoding the protein huntingtin (htt), is characterized by progressive deterioration of cognitive and motor functions, paralleled by extensive loss of striatal neurons. At the cellular level, pathogenesis involves an early and prolonged period of neuronal dysfunction followed by neuronal death. Understanding the molecular events driving these deleterious processes is critical to the successful development of therapies to slow down or halt the progression of the disease. Here, we examined biochemical processes in a HD ex vivo rat model, as well as in a HD model for cultured neurons using synchrotron-assisted Fourier transform infrared microspectroscopy (S-FTIRM). The model, based on lentiviral-mediated delivery of a fragment of the HD gene, expresses a mutant htt fragment in one brain hemisphere and a wild-type htt fragment in the control hemisphere. S-FTIRM allowed for high spatial resolution and distinction between spectral features occurring in gray and white matter. We measured a higher content of β-sheet protein in the striatal gray matter exposed to mutant htt as early as 4 weeks following the initiation of mutant htt exposure. In contrast, white matter tracts did not exhibit any changes in protein structure but surprisingly showed reduced content of unsaturated lipids and a significant increase in spectral features associated with phosphorylation. The former is reminiscent of changes consistent with a myelination deficiency, while the latter is characteristic of early pro-apoptotic events. These findings point to the utility of the label-free FTIRM method to follow mutant htt’s β-sheet-rich transformation in striatal neurons ex vivo, provide further evidence for mutant htt amyloidogenesis in vivo, and demonstrate novel chemical features indicative of white matter changes in HD. Parallel studies in cultured neurons expressing the same htt fragments showed similar changes. |
doi_str_mv | 10.1021/ac201102p |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1041612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>898504310</sourcerecordid><originalsourceid>FETCH-LOGICAL-a533t-b43ddb11cefe745f8bbcb7a6c87663518142792eff029eb986e1a508840326fd3</originalsourceid><addsrcrecordid>eNplks1uEzEQx1cIREPhwAsgCwkhDgF_7IdzLElpKqVwKBVHy-udzbra2FvbG2lvvAaPwuvwJHibkD1wsj3--f-fGU-SvCb4I8GUfJKKYhJ33ZNkRjKK5znn9GkywxizOS0wPkteeH-PR4jkz5MzSjjnrMhnye_bwajG2eCsQdemdtJBhW60ctZ3oGLYK9sNaAUhnrTZotAAutzbtg86PrE1WvdmvAjW_Pn5y6OV9iA9oK_QO9vJ0NjWbgckTYVu--0W_KPKndEPPaCldQ5aGcCPSqvB171Rj8LaoB-NDoD24Hzv0ZWTA_rsZIzfyBDAvUye1bL18Oq4nid3Xy6_L9fzzber6-XFZi4zxsK8TFlVlYQoqKFIs5qXpSoLmSte5DnLCCcpLRYU6hrTBZQLngORGeY8xYzmdcXOk7cHXRszF17FnFSjrDGxH4LglOSERujDAWpkKzqnd9INwkot1hcbMcYww4zTjO1JZN8f2M7Z2AMfxE57BW0rDdjeC77gGU4ZwZP1iby3vTOxWrHAJC2KHPPJevwy76A--RMsxvEQp_GI7JujYF_uoDqR_-YhAu-OgPRKtnEcjNJ-4tKxWEomTio_JfW_4V86ldE9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901477608</pqid></control><display><type>article</type><title>Synchrotron Infrared Microspectroscopy Detecting the Evolution of Huntington’s Disease Neuropathology and Suggesting Unique Correlates of Dysfunction in White versus Gray Brain Matter</title><source>MEDLINE</source><source>ACS Publications</source><creator>Bonda, Markus ; Perrin, Valérie ; Vileno, Bertrand ; Runne, Heike ; Kretlow, Ariane ; Forró, László ; Luthi-Carter, Ruth ; Miller, Lisa M ; Jeney, Sylvia</creator><creatorcontrib>Bonda, Markus ; Perrin, Valérie ; Vileno, Bertrand ; Runne, Heike ; Kretlow, Ariane ; Forró, László ; Luthi-Carter, Ruth ; Miller, Lisa M ; Jeney, Sylvia ; BROOKHAVEN NATIONAL LABORATORY (BNL)</creatorcontrib><description>Huntington’s disease (HD), caused by a mutation of the corresponding gene encoding the protein huntingtin (htt), is characterized by progressive deterioration of cognitive and motor functions, paralleled by extensive loss of striatal neurons. At the cellular level, pathogenesis involves an early and prolonged period of neuronal dysfunction followed by neuronal death. Understanding the molecular events driving these deleterious processes is critical to the successful development of therapies to slow down or halt the progression of the disease. Here, we examined biochemical processes in a HD ex vivo rat model, as well as in a HD model for cultured neurons using synchrotron-assisted Fourier transform infrared microspectroscopy (S-FTIRM). The model, based on lentiviral-mediated delivery of a fragment of the HD gene, expresses a mutant htt fragment in one brain hemisphere and a wild-type htt fragment in the control hemisphere. S-FTIRM allowed for high spatial resolution and distinction between spectral features occurring in gray and white matter. We measured a higher content of β-sheet protein in the striatal gray matter exposed to mutant htt as early as 4 weeks following the initiation of mutant htt exposure. In contrast, white matter tracts did not exhibit any changes in protein structure but surprisingly showed reduced content of unsaturated lipids and a significant increase in spectral features associated with phosphorylation. The former is reminiscent of changes consistent with a myelination deficiency, while the latter is characteristic of early pro-apoptotic events. These findings point to the utility of the label-free FTIRM method to follow mutant htt’s β-sheet-rich transformation in striatal neurons ex vivo, provide further evidence for mutant htt amyloidogenesis in vivo, and demonstrate novel chemical features indicative of white matter changes in HD. Parallel studies in cultured neurons expressing the same htt fragments showed similar changes.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac201102p</identifier><identifier>PMID: 21888376</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>60 APPLIED LIFE SCIENCES ; Ageing, cell death ; Allergology ; Amyloidosis ; Animals ; BASIC BIOLOGICAL SCIENCES ; Biochemistry, Molecular Biology ; Biological and medical sciences ; Biophysics ; BRAIN ; Brain - metabolism ; Brain - pathology ; Cell physiology ; Cells, Cultured ; Chemical Physics ; Chemical Sciences ; Corpus Striatum - cytology ; Corpus Striatum - metabolism ; Discriminant Analysis ; DISEASES ; Female ; Fundamental and applied biological sciences. Psychology ; Gene expression ; GENES ; Huntingtin Protein ; Huntington Disease - genetics ; Huntington Disease - metabolism ; Huntington Disease - pathology ; Huntingtons disease ; Immunology ; IN VIVO ; Inorganic chemistry ; Life Sciences ; LIPIDS ; Material chemistry ; Molecular and cellular biology ; MOTORS ; MUTANTS ; Mutation ; MUTATIONS ; NERVE CELLS ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Neurons ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; PATHOGENESIS ; PHOSPHORYLATION ; Physics ; PROTEIN STRUCTURE ; Protein Structure, Secondary ; PROTEINS ; Rats ; Rats, Wistar ; SPATIAL RESOLUTION ; Spectroscopy, Fourier Transform Infrared ; SYNCHROTRONS ; TRANSFORMATIONS</subject><ispartof>Analytical chemistry (Washington), 2011-10, Vol.83 (20), p.7712-7720</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>2011 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 15, 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a533t-b43ddb11cefe745f8bbcb7a6c87663518142792eff029eb986e1a508840326fd3</citedby><cites>FETCH-LOGICAL-a533t-b43ddb11cefe745f8bbcb7a6c87663518142792eff029eb986e1a508840326fd3</cites><orcidid>0000-0001-7527-2068</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac201102p$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac201102p$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24612321$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21888376$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03038253$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1041612$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonda, Markus</creatorcontrib><creatorcontrib>Perrin, Valérie</creatorcontrib><creatorcontrib>Vileno, Bertrand</creatorcontrib><creatorcontrib>Runne, Heike</creatorcontrib><creatorcontrib>Kretlow, Ariane</creatorcontrib><creatorcontrib>Forró, László</creatorcontrib><creatorcontrib>Luthi-Carter, Ruth</creatorcontrib><creatorcontrib>Miller, Lisa M</creatorcontrib><creatorcontrib>Jeney, Sylvia</creatorcontrib><creatorcontrib>BROOKHAVEN NATIONAL LABORATORY (BNL)</creatorcontrib><title>Synchrotron Infrared Microspectroscopy Detecting the Evolution of Huntington’s Disease Neuropathology and Suggesting Unique Correlates of Dysfunction in White versus Gray Brain Matter</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Huntington’s disease (HD), caused by a mutation of the corresponding gene encoding the protein huntingtin (htt), is characterized by progressive deterioration of cognitive and motor functions, paralleled by extensive loss of striatal neurons. At the cellular level, pathogenesis involves an early and prolonged period of neuronal dysfunction followed by neuronal death. Understanding the molecular events driving these deleterious processes is critical to the successful development of therapies to slow down or halt the progression of the disease. Here, we examined biochemical processes in a HD ex vivo rat model, as well as in a HD model for cultured neurons using synchrotron-assisted Fourier transform infrared microspectroscopy (S-FTIRM). The model, based on lentiviral-mediated delivery of a fragment of the HD gene, expresses a mutant htt fragment in one brain hemisphere and a wild-type htt fragment in the control hemisphere. S-FTIRM allowed for high spatial resolution and distinction between spectral features occurring in gray and white matter. We measured a higher content of β-sheet protein in the striatal gray matter exposed to mutant htt as early as 4 weeks following the initiation of mutant htt exposure. In contrast, white matter tracts did not exhibit any changes in protein structure but surprisingly showed reduced content of unsaturated lipids and a significant increase in spectral features associated with phosphorylation. The former is reminiscent of changes consistent with a myelination deficiency, while the latter is characteristic of early pro-apoptotic events. These findings point to the utility of the label-free FTIRM method to follow mutant htt’s β-sheet-rich transformation in striatal neurons ex vivo, provide further evidence for mutant htt amyloidogenesis in vivo, and demonstrate novel chemical features indicative of white matter changes in HD. Parallel studies in cultured neurons expressing the same htt fragments showed similar changes.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Ageing, cell death</subject><subject>Allergology</subject><subject>Amyloidosis</subject><subject>Animals</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological and medical sciences</subject><subject>Biophysics</subject><subject>BRAIN</subject><subject>Brain - metabolism</subject><subject>Brain - pathology</subject><subject>Cell physiology</subject><subject>Cells, Cultured</subject><subject>Chemical Physics</subject><subject>Chemical Sciences</subject><subject>Corpus Striatum - cytology</subject><subject>Corpus Striatum - metabolism</subject><subject>Discriminant Analysis</subject><subject>DISEASES</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>GENES</subject><subject>Huntingtin Protein</subject><subject>Huntington Disease - genetics</subject><subject>Huntington Disease - metabolism</subject><subject>Huntington Disease - pathology</subject><subject>Huntingtons disease</subject><subject>Immunology</subject><subject>IN VIVO</subject><subject>Inorganic chemistry</subject><subject>Life Sciences</subject><subject>LIPIDS</subject><subject>Material chemistry</subject><subject>Molecular and cellular biology</subject><subject>MOTORS</subject><subject>MUTANTS</subject><subject>Mutation</subject><subject>MUTATIONS</subject><subject>NERVE CELLS</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurons</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>PATHOGENESIS</subject><subject>PHOSPHORYLATION</subject><subject>Physics</subject><subject>PROTEIN STRUCTURE</subject><subject>Protein Structure, Secondary</subject><subject>PROTEINS</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>SPATIAL RESOLUTION</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>SYNCHROTRONS</subject><subject>TRANSFORMATIONS</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplks1uEzEQx1cIREPhwAsgCwkhDgF_7IdzLElpKqVwKBVHy-udzbra2FvbG2lvvAaPwuvwJHibkD1wsj3--f-fGU-SvCb4I8GUfJKKYhJ33ZNkRjKK5znn9GkywxizOS0wPkteeH-PR4jkz5MzSjjnrMhnye_bwajG2eCsQdemdtJBhW60ctZ3oGLYK9sNaAUhnrTZotAAutzbtg86PrE1WvdmvAjW_Pn5y6OV9iA9oK_QO9vJ0NjWbgckTYVu--0W_KPKndEPPaCldQ5aGcCPSqvB171Rj8LaoB-NDoD24Hzv0ZWTA_rsZIzfyBDAvUye1bL18Oq4nid3Xy6_L9fzzber6-XFZi4zxsK8TFlVlYQoqKFIs5qXpSoLmSte5DnLCCcpLRYU6hrTBZQLngORGeY8xYzmdcXOk7cHXRszF17FnFSjrDGxH4LglOSERujDAWpkKzqnd9INwkot1hcbMcYww4zTjO1JZN8f2M7Z2AMfxE57BW0rDdjeC77gGU4ZwZP1iby3vTOxWrHAJC2KHPPJevwy76A--RMsxvEQp_GI7JujYF_uoDqR_-YhAu-OgPRKtnEcjNJ-4tKxWEomTio_JfW_4V86ldE9</recordid><startdate>20111015</startdate><enddate>20111015</enddate><creator>Bonda, Markus</creator><creator>Perrin, Valérie</creator><creator>Vileno, Bertrand</creator><creator>Runne, Heike</creator><creator>Kretlow, Ariane</creator><creator>Forró, László</creator><creator>Luthi-Carter, Ruth</creator><creator>Miller, Lisa M</creator><creator>Jeney, Sylvia</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7527-2068</orcidid></search><sort><creationdate>20111015</creationdate><title>Synchrotron Infrared Microspectroscopy Detecting the Evolution of Huntington’s Disease Neuropathology and Suggesting Unique Correlates of Dysfunction in White versus Gray Brain Matter</title><author>Bonda, Markus ; Perrin, Valérie ; Vileno, Bertrand ; Runne, Heike ; Kretlow, Ariane ; Forró, László ; Luthi-Carter, Ruth ; Miller, Lisa M ; Jeney, Sylvia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a533t-b43ddb11cefe745f8bbcb7a6c87663518142792eff029eb986e1a508840326fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Ageing, cell death</topic><topic>Allergology</topic><topic>Amyloidosis</topic><topic>Animals</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological and medical sciences</topic><topic>Biophysics</topic><topic>BRAIN</topic><topic>Brain - metabolism</topic><topic>Brain - pathology</topic><topic>Cell physiology</topic><topic>Cells, Cultured</topic><topic>Chemical Physics</topic><topic>Chemical Sciences</topic><topic>Corpus Striatum - cytology</topic><topic>Corpus Striatum - metabolism</topic><topic>Discriminant Analysis</topic><topic>DISEASES</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>GENES</topic><topic>Huntingtin Protein</topic><topic>Huntington Disease - genetics</topic><topic>Huntington Disease - metabolism</topic><topic>Huntington Disease - pathology</topic><topic>Huntingtons disease</topic><topic>Immunology</topic><topic>IN VIVO</topic><topic>Inorganic chemistry</topic><topic>Life Sciences</topic><topic>LIPIDS</topic><topic>Material chemistry</topic><topic>Molecular and cellular biology</topic><topic>MOTORS</topic><topic>MUTANTS</topic><topic>Mutation</topic><topic>MUTATIONS</topic><topic>NERVE CELLS</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurons</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>PATHOGENESIS</topic><topic>PHOSPHORYLATION</topic><topic>Physics</topic><topic>PROTEIN STRUCTURE</topic><topic>Protein Structure, Secondary</topic><topic>PROTEINS</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>SPATIAL RESOLUTION</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>SYNCHROTRONS</topic><topic>TRANSFORMATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonda, Markus</creatorcontrib><creatorcontrib>Perrin, Valérie</creatorcontrib><creatorcontrib>Vileno, Bertrand</creatorcontrib><creatorcontrib>Runne, Heike</creatorcontrib><creatorcontrib>Kretlow, Ariane</creatorcontrib><creatorcontrib>Forró, László</creatorcontrib><creatorcontrib>Luthi-Carter, Ruth</creatorcontrib><creatorcontrib>Miller, Lisa M</creatorcontrib><creatorcontrib>Jeney, Sylvia</creatorcontrib><creatorcontrib>BROOKHAVEN NATIONAL LABORATORY (BNL)</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonda, Markus</au><au>Perrin, Valérie</au><au>Vileno, Bertrand</au><au>Runne, Heike</au><au>Kretlow, Ariane</au><au>Forró, László</au><au>Luthi-Carter, Ruth</au><au>Miller, Lisa M</au><au>Jeney, Sylvia</au><aucorp>BROOKHAVEN NATIONAL LABORATORY (BNL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchrotron Infrared Microspectroscopy Detecting the Evolution of Huntington’s Disease Neuropathology and Suggesting Unique Correlates of Dysfunction in White versus Gray Brain Matter</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2011-10-15</date><risdate>2011</risdate><volume>83</volume><issue>20</issue><spage>7712</spage><epage>7720</epage><pages>7712-7720</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Huntington’s disease (HD), caused by a mutation of the corresponding gene encoding the protein huntingtin (htt), is characterized by progressive deterioration of cognitive and motor functions, paralleled by extensive loss of striatal neurons. At the cellular level, pathogenesis involves an early and prolonged period of neuronal dysfunction followed by neuronal death. Understanding the molecular events driving these deleterious processes is critical to the successful development of therapies to slow down or halt the progression of the disease. Here, we examined biochemical processes in a HD ex vivo rat model, as well as in a HD model for cultured neurons using synchrotron-assisted Fourier transform infrared microspectroscopy (S-FTIRM). The model, based on lentiviral-mediated delivery of a fragment of the HD gene, expresses a mutant htt fragment in one brain hemisphere and a wild-type htt fragment in the control hemisphere. S-FTIRM allowed for high spatial resolution and distinction between spectral features occurring in gray and white matter. We measured a higher content of β-sheet protein in the striatal gray matter exposed to mutant htt as early as 4 weeks following the initiation of mutant htt exposure. In contrast, white matter tracts did not exhibit any changes in protein structure but surprisingly showed reduced content of unsaturated lipids and a significant increase in spectral features associated with phosphorylation. The former is reminiscent of changes consistent with a myelination deficiency, while the latter is characteristic of early pro-apoptotic events. These findings point to the utility of the label-free FTIRM method to follow mutant htt’s β-sheet-rich transformation in striatal neurons ex vivo, provide further evidence for mutant htt amyloidogenesis in vivo, and demonstrate novel chemical features indicative of white matter changes in HD. Parallel studies in cultured neurons expressing the same htt fragments showed similar changes.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21888376</pmid><doi>10.1021/ac201102p</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7527-2068</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2011-10, Vol.83 (20), p.7712-7720 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_osti_scitechconnect_1041612 |
source | MEDLINE; ACS Publications |
subjects | 60 APPLIED LIFE SCIENCES Ageing, cell death Allergology Amyloidosis Animals BASIC BIOLOGICAL SCIENCES Biochemistry, Molecular Biology Biological and medical sciences Biophysics BRAIN Brain - metabolism Brain - pathology Cell physiology Cells, Cultured Chemical Physics Chemical Sciences Corpus Striatum - cytology Corpus Striatum - metabolism Discriminant Analysis DISEASES Female Fundamental and applied biological sciences. Psychology Gene expression GENES Huntingtin Protein Huntington Disease - genetics Huntington Disease - metabolism Huntington Disease - pathology Huntingtons disease Immunology IN VIVO Inorganic chemistry Life Sciences LIPIDS Material chemistry Molecular and cellular biology MOTORS MUTANTS Mutation MUTATIONS NERVE CELLS Nerve Tissue Proteins - genetics Nerve Tissue Proteins - metabolism Neurons Nuclear Proteins - genetics Nuclear Proteins - metabolism PATHOGENESIS PHOSPHORYLATION Physics PROTEIN STRUCTURE Protein Structure, Secondary PROTEINS Rats Rats, Wistar SPATIAL RESOLUTION Spectroscopy, Fourier Transform Infrared SYNCHROTRONS TRANSFORMATIONS |
title | Synchrotron Infrared Microspectroscopy Detecting the Evolution of Huntington’s Disease Neuropathology and Suggesting Unique Correlates of Dysfunction in White versus Gray Brain Matter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A57%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchrotron%20Infrared%20Microspectroscopy%20Detecting%20the%20Evolution%20of%20Huntington%E2%80%99s%20Disease%20Neuropathology%20and%20Suggesting%20Unique%20Correlates%20of%20Dysfunction%20in%20White%20versus%20Gray%20Brain%20Matter&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Bonda,%20Markus&rft.aucorp=BROOKHAVEN%20NATIONAL%20LABORATORY%20(BNL)&rft.date=2011-10-15&rft.volume=83&rft.issue=20&rft.spage=7712&rft.epage=7720&rft.pages=7712-7720&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac201102p&rft_dat=%3Cproquest_osti_%3E898504310%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901477608&rft_id=info:pmid/21888376&rfr_iscdi=true |