Synchrotron Infrared Microspectroscopy Detecting the Evolution of Huntington’s Disease Neuropathology and Suggesting Unique Correlates of Dysfunction in White versus Gray Brain Matter

Huntington’s disease (HD), caused by a mutation of the corresponding gene encoding the protein huntingtin (htt), is characterized by progressive deterioration of cognitive and motor functions, paralleled by extensive loss of striatal neurons. At the cellular level, pathogenesis involves an early and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2011-10, Vol.83 (20), p.7712-7720
Hauptverfasser: Bonda, Markus, Perrin, Valérie, Vileno, Bertrand, Runne, Heike, Kretlow, Ariane, Forró, László, Luthi-Carter, Ruth, Miller, Lisa M, Jeney, Sylvia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7720
container_issue 20
container_start_page 7712
container_title Analytical chemistry (Washington)
container_volume 83
creator Bonda, Markus
Perrin, Valérie
Vileno, Bertrand
Runne, Heike
Kretlow, Ariane
Forró, László
Luthi-Carter, Ruth
Miller, Lisa M
Jeney, Sylvia
description Huntington’s disease (HD), caused by a mutation of the corresponding gene encoding the protein huntingtin (htt), is characterized by progressive deterioration of cognitive and motor functions, paralleled by extensive loss of striatal neurons. At the cellular level, pathogenesis involves an early and prolonged period of neuronal dysfunction followed by neuronal death. Understanding the molecular events driving these deleterious processes is critical to the successful development of therapies to slow down or halt the progression of the disease. Here, we examined biochemical processes in a HD ex vivo rat model, as well as in a HD model for cultured neurons using synchrotron-assisted Fourier transform infrared microspectroscopy (S-FTIRM). The model, based on lentiviral-mediated delivery of a fragment of the HD gene, expresses a mutant htt fragment in one brain hemisphere and a wild-type htt fragment in the control hemisphere. S-FTIRM allowed for high spatial resolution and distinction between spectral features occurring in gray and white matter. We measured a higher content of β-sheet protein in the striatal gray matter exposed to mutant htt as early as 4 weeks following the initiation of mutant htt exposure. In contrast, white matter tracts did not exhibit any changes in protein structure but surprisingly showed reduced content of unsaturated lipids and a significant increase in spectral features associated with phosphorylation. The former is reminiscent of changes consistent with a myelination deficiency, while the latter is characteristic of early pro-apoptotic events. These findings point to the utility of the label-free FTIRM method to follow mutant htt’s β-sheet-rich transformation in striatal neurons ex vivo, provide further evidence for mutant htt amyloidogenesis in vivo, and demonstrate novel chemical features indicative of white matter changes in HD. Parallel studies in cultured neurons expressing the same htt fragments showed similar changes.
doi_str_mv 10.1021/ac201102p
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1041612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>898504310</sourcerecordid><originalsourceid>FETCH-LOGICAL-a533t-b43ddb11cefe745f8bbcb7a6c87663518142792eff029eb986e1a508840326fd3</originalsourceid><addsrcrecordid>eNplks1uEzEQx1cIREPhwAsgCwkhDgF_7IdzLElpKqVwKBVHy-udzbra2FvbG2lvvAaPwuvwJHibkD1wsj3--f-fGU-SvCb4I8GUfJKKYhJ33ZNkRjKK5znn9GkywxizOS0wPkteeH-PR4jkz5MzSjjnrMhnye_bwajG2eCsQdemdtJBhW60ctZ3oGLYK9sNaAUhnrTZotAAutzbtg86PrE1WvdmvAjW_Pn5y6OV9iA9oK_QO9vJ0NjWbgckTYVu--0W_KPKndEPPaCldQ5aGcCPSqvB171Rj8LaoB-NDoD24Hzv0ZWTA_rsZIzfyBDAvUye1bL18Oq4nid3Xy6_L9fzzber6-XFZi4zxsK8TFlVlYQoqKFIs5qXpSoLmSte5DnLCCcpLRYU6hrTBZQLngORGeY8xYzmdcXOk7cHXRszF17FnFSjrDGxH4LglOSERujDAWpkKzqnd9INwkot1hcbMcYww4zTjO1JZN8f2M7Z2AMfxE57BW0rDdjeC77gGU4ZwZP1iby3vTOxWrHAJC2KHPPJevwy76A--RMsxvEQp_GI7JujYF_uoDqR_-YhAu-OgPRKtnEcjNJ-4tKxWEomTio_JfW_4V86ldE9</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>901477608</pqid></control><display><type>article</type><title>Synchrotron Infrared Microspectroscopy Detecting the Evolution of Huntington’s Disease Neuropathology and Suggesting Unique Correlates of Dysfunction in White versus Gray Brain Matter</title><source>MEDLINE</source><source>ACS Publications</source><creator>Bonda, Markus ; Perrin, Valérie ; Vileno, Bertrand ; Runne, Heike ; Kretlow, Ariane ; Forró, László ; Luthi-Carter, Ruth ; Miller, Lisa M ; Jeney, Sylvia</creator><creatorcontrib>Bonda, Markus ; Perrin, Valérie ; Vileno, Bertrand ; Runne, Heike ; Kretlow, Ariane ; Forró, László ; Luthi-Carter, Ruth ; Miller, Lisa M ; Jeney, Sylvia ; BROOKHAVEN NATIONAL LABORATORY (BNL)</creatorcontrib><description>Huntington’s disease (HD), caused by a mutation of the corresponding gene encoding the protein huntingtin (htt), is characterized by progressive deterioration of cognitive and motor functions, paralleled by extensive loss of striatal neurons. At the cellular level, pathogenesis involves an early and prolonged period of neuronal dysfunction followed by neuronal death. Understanding the molecular events driving these deleterious processes is critical to the successful development of therapies to slow down or halt the progression of the disease. Here, we examined biochemical processes in a HD ex vivo rat model, as well as in a HD model for cultured neurons using synchrotron-assisted Fourier transform infrared microspectroscopy (S-FTIRM). The model, based on lentiviral-mediated delivery of a fragment of the HD gene, expresses a mutant htt fragment in one brain hemisphere and a wild-type htt fragment in the control hemisphere. S-FTIRM allowed for high spatial resolution and distinction between spectral features occurring in gray and white matter. We measured a higher content of β-sheet protein in the striatal gray matter exposed to mutant htt as early as 4 weeks following the initiation of mutant htt exposure. In contrast, white matter tracts did not exhibit any changes in protein structure but surprisingly showed reduced content of unsaturated lipids and a significant increase in spectral features associated with phosphorylation. The former is reminiscent of changes consistent with a myelination deficiency, while the latter is characteristic of early pro-apoptotic events. These findings point to the utility of the label-free FTIRM method to follow mutant htt’s β-sheet-rich transformation in striatal neurons ex vivo, provide further evidence for mutant htt amyloidogenesis in vivo, and demonstrate novel chemical features indicative of white matter changes in HD. Parallel studies in cultured neurons expressing the same htt fragments showed similar changes.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac201102p</identifier><identifier>PMID: 21888376</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>60 APPLIED LIFE SCIENCES ; Ageing, cell death ; Allergology ; Amyloidosis ; Animals ; BASIC BIOLOGICAL SCIENCES ; Biochemistry, Molecular Biology ; Biological and medical sciences ; Biophysics ; BRAIN ; Brain - metabolism ; Brain - pathology ; Cell physiology ; Cells, Cultured ; Chemical Physics ; Chemical Sciences ; Corpus Striatum - cytology ; Corpus Striatum - metabolism ; Discriminant Analysis ; DISEASES ; Female ; Fundamental and applied biological sciences. Psychology ; Gene expression ; GENES ; Huntingtin Protein ; Huntington Disease - genetics ; Huntington Disease - metabolism ; Huntington Disease - pathology ; Huntingtons disease ; Immunology ; IN VIVO ; Inorganic chemistry ; Life Sciences ; LIPIDS ; Material chemistry ; Molecular and cellular biology ; MOTORS ; MUTANTS ; Mutation ; MUTATIONS ; NERVE CELLS ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Neurons ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; PATHOGENESIS ; PHOSPHORYLATION ; Physics ; PROTEIN STRUCTURE ; Protein Structure, Secondary ; PROTEINS ; Rats ; Rats, Wistar ; SPATIAL RESOLUTION ; Spectroscopy, Fourier Transform Infrared ; SYNCHROTRONS ; TRANSFORMATIONS</subject><ispartof>Analytical chemistry (Washington), 2011-10, Vol.83 (20), p.7712-7720</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>2011 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 15, 2011</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a533t-b43ddb11cefe745f8bbcb7a6c87663518142792eff029eb986e1a508840326fd3</citedby><cites>FETCH-LOGICAL-a533t-b43ddb11cefe745f8bbcb7a6c87663518142792eff029eb986e1a508840326fd3</cites><orcidid>0000-0001-7527-2068</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac201102p$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac201102p$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24612321$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21888376$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03038253$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1041612$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonda, Markus</creatorcontrib><creatorcontrib>Perrin, Valérie</creatorcontrib><creatorcontrib>Vileno, Bertrand</creatorcontrib><creatorcontrib>Runne, Heike</creatorcontrib><creatorcontrib>Kretlow, Ariane</creatorcontrib><creatorcontrib>Forró, László</creatorcontrib><creatorcontrib>Luthi-Carter, Ruth</creatorcontrib><creatorcontrib>Miller, Lisa M</creatorcontrib><creatorcontrib>Jeney, Sylvia</creatorcontrib><creatorcontrib>BROOKHAVEN NATIONAL LABORATORY (BNL)</creatorcontrib><title>Synchrotron Infrared Microspectroscopy Detecting the Evolution of Huntington’s Disease Neuropathology and Suggesting Unique Correlates of Dysfunction in White versus Gray Brain Matter</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Huntington’s disease (HD), caused by a mutation of the corresponding gene encoding the protein huntingtin (htt), is characterized by progressive deterioration of cognitive and motor functions, paralleled by extensive loss of striatal neurons. At the cellular level, pathogenesis involves an early and prolonged period of neuronal dysfunction followed by neuronal death. Understanding the molecular events driving these deleterious processes is critical to the successful development of therapies to slow down or halt the progression of the disease. Here, we examined biochemical processes in a HD ex vivo rat model, as well as in a HD model for cultured neurons using synchrotron-assisted Fourier transform infrared microspectroscopy (S-FTIRM). The model, based on lentiviral-mediated delivery of a fragment of the HD gene, expresses a mutant htt fragment in one brain hemisphere and a wild-type htt fragment in the control hemisphere. S-FTIRM allowed for high spatial resolution and distinction between spectral features occurring in gray and white matter. We measured a higher content of β-sheet protein in the striatal gray matter exposed to mutant htt as early as 4 weeks following the initiation of mutant htt exposure. In contrast, white matter tracts did not exhibit any changes in protein structure but surprisingly showed reduced content of unsaturated lipids and a significant increase in spectral features associated with phosphorylation. The former is reminiscent of changes consistent with a myelination deficiency, while the latter is characteristic of early pro-apoptotic events. These findings point to the utility of the label-free FTIRM method to follow mutant htt’s β-sheet-rich transformation in striatal neurons ex vivo, provide further evidence for mutant htt amyloidogenesis in vivo, and demonstrate novel chemical features indicative of white matter changes in HD. Parallel studies in cultured neurons expressing the same htt fragments showed similar changes.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Ageing, cell death</subject><subject>Allergology</subject><subject>Amyloidosis</subject><subject>Animals</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological and medical sciences</subject><subject>Biophysics</subject><subject>BRAIN</subject><subject>Brain - metabolism</subject><subject>Brain - pathology</subject><subject>Cell physiology</subject><subject>Cells, Cultured</subject><subject>Chemical Physics</subject><subject>Chemical Sciences</subject><subject>Corpus Striatum - cytology</subject><subject>Corpus Striatum - metabolism</subject><subject>Discriminant Analysis</subject><subject>DISEASES</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>GENES</subject><subject>Huntingtin Protein</subject><subject>Huntington Disease - genetics</subject><subject>Huntington Disease - metabolism</subject><subject>Huntington Disease - pathology</subject><subject>Huntingtons disease</subject><subject>Immunology</subject><subject>IN VIVO</subject><subject>Inorganic chemistry</subject><subject>Life Sciences</subject><subject>LIPIDS</subject><subject>Material chemistry</subject><subject>Molecular and cellular biology</subject><subject>MOTORS</subject><subject>MUTANTS</subject><subject>Mutation</subject><subject>MUTATIONS</subject><subject>NERVE CELLS</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurons</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>PATHOGENESIS</subject><subject>PHOSPHORYLATION</subject><subject>Physics</subject><subject>PROTEIN STRUCTURE</subject><subject>Protein Structure, Secondary</subject><subject>PROTEINS</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>SPATIAL RESOLUTION</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>SYNCHROTRONS</subject><subject>TRANSFORMATIONS</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplks1uEzEQx1cIREPhwAsgCwkhDgF_7IdzLElpKqVwKBVHy-udzbra2FvbG2lvvAaPwuvwJHibkD1wsj3--f-fGU-SvCb4I8GUfJKKYhJ33ZNkRjKK5znn9GkywxizOS0wPkteeH-PR4jkz5MzSjjnrMhnye_bwajG2eCsQdemdtJBhW60ctZ3oGLYK9sNaAUhnrTZotAAutzbtg86PrE1WvdmvAjW_Pn5y6OV9iA9oK_QO9vJ0NjWbgckTYVu--0W_KPKndEPPaCldQ5aGcCPSqvB171Rj8LaoB-NDoD24Hzv0ZWTA_rsZIzfyBDAvUye1bL18Oq4nid3Xy6_L9fzzber6-XFZi4zxsK8TFlVlYQoqKFIs5qXpSoLmSte5DnLCCcpLRYU6hrTBZQLngORGeY8xYzmdcXOk7cHXRszF17FnFSjrDGxH4LglOSERujDAWpkKzqnd9INwkot1hcbMcYww4zTjO1JZN8f2M7Z2AMfxE57BW0rDdjeC77gGU4ZwZP1iby3vTOxWrHAJC2KHPPJevwy76A--RMsxvEQp_GI7JujYF_uoDqR_-YhAu-OgPRKtnEcjNJ-4tKxWEomTio_JfW_4V86ldE9</recordid><startdate>20111015</startdate><enddate>20111015</enddate><creator>Bonda, Markus</creator><creator>Perrin, Valérie</creator><creator>Vileno, Bertrand</creator><creator>Runne, Heike</creator><creator>Kretlow, Ariane</creator><creator>Forró, László</creator><creator>Luthi-Carter, Ruth</creator><creator>Miller, Lisa M</creator><creator>Jeney, Sylvia</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7527-2068</orcidid></search><sort><creationdate>20111015</creationdate><title>Synchrotron Infrared Microspectroscopy Detecting the Evolution of Huntington’s Disease Neuropathology and Suggesting Unique Correlates of Dysfunction in White versus Gray Brain Matter</title><author>Bonda, Markus ; Perrin, Valérie ; Vileno, Bertrand ; Runne, Heike ; Kretlow, Ariane ; Forró, László ; Luthi-Carter, Ruth ; Miller, Lisa M ; Jeney, Sylvia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a533t-b43ddb11cefe745f8bbcb7a6c87663518142792eff029eb986e1a508840326fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Ageing, cell death</topic><topic>Allergology</topic><topic>Amyloidosis</topic><topic>Animals</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological and medical sciences</topic><topic>Biophysics</topic><topic>BRAIN</topic><topic>Brain - metabolism</topic><topic>Brain - pathology</topic><topic>Cell physiology</topic><topic>Cells, Cultured</topic><topic>Chemical Physics</topic><topic>Chemical Sciences</topic><topic>Corpus Striatum - cytology</topic><topic>Corpus Striatum - metabolism</topic><topic>Discriminant Analysis</topic><topic>DISEASES</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>GENES</topic><topic>Huntingtin Protein</topic><topic>Huntington Disease - genetics</topic><topic>Huntington Disease - metabolism</topic><topic>Huntington Disease - pathology</topic><topic>Huntingtons disease</topic><topic>Immunology</topic><topic>IN VIVO</topic><topic>Inorganic chemistry</topic><topic>Life Sciences</topic><topic>LIPIDS</topic><topic>Material chemistry</topic><topic>Molecular and cellular biology</topic><topic>MOTORS</topic><topic>MUTANTS</topic><topic>Mutation</topic><topic>MUTATIONS</topic><topic>NERVE CELLS</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurons</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>PATHOGENESIS</topic><topic>PHOSPHORYLATION</topic><topic>Physics</topic><topic>PROTEIN STRUCTURE</topic><topic>Protein Structure, Secondary</topic><topic>PROTEINS</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>SPATIAL RESOLUTION</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>SYNCHROTRONS</topic><topic>TRANSFORMATIONS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonda, Markus</creatorcontrib><creatorcontrib>Perrin, Valérie</creatorcontrib><creatorcontrib>Vileno, Bertrand</creatorcontrib><creatorcontrib>Runne, Heike</creatorcontrib><creatorcontrib>Kretlow, Ariane</creatorcontrib><creatorcontrib>Forró, László</creatorcontrib><creatorcontrib>Luthi-Carter, Ruth</creatorcontrib><creatorcontrib>Miller, Lisa M</creatorcontrib><creatorcontrib>Jeney, Sylvia</creatorcontrib><creatorcontrib>BROOKHAVEN NATIONAL LABORATORY (BNL)</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonda, Markus</au><au>Perrin, Valérie</au><au>Vileno, Bertrand</au><au>Runne, Heike</au><au>Kretlow, Ariane</au><au>Forró, László</au><au>Luthi-Carter, Ruth</au><au>Miller, Lisa M</au><au>Jeney, Sylvia</au><aucorp>BROOKHAVEN NATIONAL LABORATORY (BNL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchrotron Infrared Microspectroscopy Detecting the Evolution of Huntington’s Disease Neuropathology and Suggesting Unique Correlates of Dysfunction in White versus Gray Brain Matter</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2011-10-15</date><risdate>2011</risdate><volume>83</volume><issue>20</issue><spage>7712</spage><epage>7720</epage><pages>7712-7720</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Huntington’s disease (HD), caused by a mutation of the corresponding gene encoding the protein huntingtin (htt), is characterized by progressive deterioration of cognitive and motor functions, paralleled by extensive loss of striatal neurons. At the cellular level, pathogenesis involves an early and prolonged period of neuronal dysfunction followed by neuronal death. Understanding the molecular events driving these deleterious processes is critical to the successful development of therapies to slow down or halt the progression of the disease. Here, we examined biochemical processes in a HD ex vivo rat model, as well as in a HD model for cultured neurons using synchrotron-assisted Fourier transform infrared microspectroscopy (S-FTIRM). The model, based on lentiviral-mediated delivery of a fragment of the HD gene, expresses a mutant htt fragment in one brain hemisphere and a wild-type htt fragment in the control hemisphere. S-FTIRM allowed for high spatial resolution and distinction between spectral features occurring in gray and white matter. We measured a higher content of β-sheet protein in the striatal gray matter exposed to mutant htt as early as 4 weeks following the initiation of mutant htt exposure. In contrast, white matter tracts did not exhibit any changes in protein structure but surprisingly showed reduced content of unsaturated lipids and a significant increase in spectral features associated with phosphorylation. The former is reminiscent of changes consistent with a myelination deficiency, while the latter is characteristic of early pro-apoptotic events. These findings point to the utility of the label-free FTIRM method to follow mutant htt’s β-sheet-rich transformation in striatal neurons ex vivo, provide further evidence for mutant htt amyloidogenesis in vivo, and demonstrate novel chemical features indicative of white matter changes in HD. Parallel studies in cultured neurons expressing the same htt fragments showed similar changes.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21888376</pmid><doi>10.1021/ac201102p</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7527-2068</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2011-10, Vol.83 (20), p.7712-7720
issn 0003-2700
1520-6882
language eng
recordid cdi_osti_scitechconnect_1041612
source MEDLINE; ACS Publications
subjects 60 APPLIED LIFE SCIENCES
Ageing, cell death
Allergology
Amyloidosis
Animals
BASIC BIOLOGICAL SCIENCES
Biochemistry, Molecular Biology
Biological and medical sciences
Biophysics
BRAIN
Brain - metabolism
Brain - pathology
Cell physiology
Cells, Cultured
Chemical Physics
Chemical Sciences
Corpus Striatum - cytology
Corpus Striatum - metabolism
Discriminant Analysis
DISEASES
Female
Fundamental and applied biological sciences. Psychology
Gene expression
GENES
Huntingtin Protein
Huntington Disease - genetics
Huntington Disease - metabolism
Huntington Disease - pathology
Huntingtons disease
Immunology
IN VIVO
Inorganic chemistry
Life Sciences
LIPIDS
Material chemistry
Molecular and cellular biology
MOTORS
MUTANTS
Mutation
MUTATIONS
NERVE CELLS
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - metabolism
Neurons
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
PATHOGENESIS
PHOSPHORYLATION
Physics
PROTEIN STRUCTURE
Protein Structure, Secondary
PROTEINS
Rats
Rats, Wistar
SPATIAL RESOLUTION
Spectroscopy, Fourier Transform Infrared
SYNCHROTRONS
TRANSFORMATIONS
title Synchrotron Infrared Microspectroscopy Detecting the Evolution of Huntington’s Disease Neuropathology and Suggesting Unique Correlates of Dysfunction in White versus Gray Brain Matter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A57%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchrotron%20Infrared%20Microspectroscopy%20Detecting%20the%20Evolution%20of%20Huntington%E2%80%99s%20Disease%20Neuropathology%20and%20Suggesting%20Unique%20Correlates%20of%20Dysfunction%20in%20White%20versus%20Gray%20Brain%20Matter&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Bonda,%20Markus&rft.aucorp=BROOKHAVEN%20NATIONAL%20LABORATORY%20(BNL)&rft.date=2011-10-15&rft.volume=83&rft.issue=20&rft.spage=7712&rft.epage=7720&rft.pages=7712-7720&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac201102p&rft_dat=%3Cproquest_osti_%3E898504310%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=901477608&rft_id=info:pmid/21888376&rfr_iscdi=true