Mesoscale modeling of intergranular bubble percolation in nuclear fuels

Phase-field simulations are used to examine the variability of intergranular fission gas bubble growth and percolation on uranium dioxide grain boundaries on a mesoscopic length scale. Three key parameters are systematically varied in this study: the contact angle (or dihedral angle) defining the bu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2012-04, Vol.111 (8), p.083511-083511-7
Hauptverfasser: Millett, Paul C., Tonks, Michael, Biner, S. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 083511-7
container_issue 8
container_start_page 083511
container_title Journal of applied physics
container_volume 111
creator Millett, Paul C.
Tonks, Michael
Biner, S. B.
description Phase-field simulations are used to examine the variability of intergranular fission gas bubble growth and percolation on uranium dioxide grain boundaries on a mesoscopic length scale. Three key parameters are systematically varied in this study: the contact angle (or dihedral angle) defining the bubble shape, the initial bubble density on the grain boundary plane, and the ratio of the gas diffusivity on the grain boundary versus the grain interiors. The simulation results agree well with previous experimental data obtained for bubble densities and average bubble areas during coalescence events. Interestingly, the rate of percolation is found to be highly variable, with a large dependency on the contact angle and the initial bubble density and little-to-no dependency on the grain boundary gas diffusivity.
doi_str_mv 10.1063/1.3702872
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1041269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1238108475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-5a893d6cfa9676d576cf72dc23870830817c9d98f7fa4b53018b15e9246efe403</originalsourceid><addsrcrecordid>eNp10EFPwyAUwHFiNHFOD36DxpMeOqG0BS4mZtFpMuNFz4TSx6xhMIEe_PYyq9488RJ-eS_5I3RO8ILgll6TBWW44qw6QDOCuShZ0-BDNMO4IiUXTByjkxjfMSaEUzFDqyeIPmplodj6HuzgNoU3xeAShE1QbrQqFN3YdRnsIGhvVRq8y6Bwo7aQf80INp6iI6NshLOfd45e7-9elg_l-nn1uLxdl5rWdSobxQXtW22UaFnbNyyPrOp1RTnDnGJOmBa94IYZVXcNxYR3pAFR1S0YqDGdo4tpr49pkFEPCfSb9s6BTpLgmlStyOhyQrvgP0aISW6HqMFa5cCPUZJ8LsepWZPp1UR18DEGMHIXhq0Kn3mZ3BeVRP4UzfZmsvuz3xn-x39Z5W9W6ekXPfh8tA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1238108475</pqid></control><display><type>article</type><title>Mesoscale modeling of intergranular bubble percolation in nuclear fuels</title><source>American Institute of Physics (AIP) Journals</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Millett, Paul C. ; Tonks, Michael ; Biner, S. B.</creator><creatorcontrib>Millett, Paul C. ; Tonks, Michael ; Biner, S. B. ; Idaho National Laboratory (INL)</creatorcontrib><description>Phase-field simulations are used to examine the variability of intergranular fission gas bubble growth and percolation on uranium dioxide grain boundaries on a mesoscopic length scale. Three key parameters are systematically varied in this study: the contact angle (or dihedral angle) defining the bubble shape, the initial bubble density on the grain boundary plane, and the ratio of the gas diffusivity on the grain boundary versus the grain interiors. The simulation results agree well with previous experimental data obtained for bubble densities and average bubble areas during coalescence events. Interestingly, the rate of percolation is found to be highly variable, with a large dependency on the contact angle and the initial bubble density and little-to-no dependency on the grain boundary gas diffusivity.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.3702872</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>BUBBLE GROWTH ; BUBBLES ; COALESCENCE ; FISSION ; GRAIN BOUNDARIES ; MATERIALS SCIENCE ; Modeling and Simulation ; NUCLEAR FUEL CYCLE AND FUEL MATERIALS ; NUCLEAR FUELS ; SHAPE ; SIMULATION ; URANIUM DIOXIDE</subject><ispartof>Journal of applied physics, 2012-04, Vol.111 (8), p.083511-083511-7</ispartof><rights>2012 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-5a893d6cfa9676d576cf72dc23870830817c9d98f7fa4b53018b15e9246efe403</citedby><cites>FETCH-LOGICAL-c344t-5a893d6cfa9676d576cf72dc23870830817c9d98f7fa4b53018b15e9246efe403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/1.3702872$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,1559,4512,27924,27925,76384,76390</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1041269$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Millett, Paul C.</creatorcontrib><creatorcontrib>Tonks, Michael</creatorcontrib><creatorcontrib>Biner, S. B.</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL)</creatorcontrib><title>Mesoscale modeling of intergranular bubble percolation in nuclear fuels</title><title>Journal of applied physics</title><description>Phase-field simulations are used to examine the variability of intergranular fission gas bubble growth and percolation on uranium dioxide grain boundaries on a mesoscopic length scale. Three key parameters are systematically varied in this study: the contact angle (or dihedral angle) defining the bubble shape, the initial bubble density on the grain boundary plane, and the ratio of the gas diffusivity on the grain boundary versus the grain interiors. The simulation results agree well with previous experimental data obtained for bubble densities and average bubble areas during coalescence events. Interestingly, the rate of percolation is found to be highly variable, with a large dependency on the contact angle and the initial bubble density and little-to-no dependency on the grain boundary gas diffusivity.</description><subject>BUBBLE GROWTH</subject><subject>BUBBLES</subject><subject>COALESCENCE</subject><subject>FISSION</subject><subject>GRAIN BOUNDARIES</subject><subject>MATERIALS SCIENCE</subject><subject>Modeling and Simulation</subject><subject>NUCLEAR FUEL CYCLE AND FUEL MATERIALS</subject><subject>NUCLEAR FUELS</subject><subject>SHAPE</subject><subject>SIMULATION</subject><subject>URANIUM DIOXIDE</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp10EFPwyAUwHFiNHFOD36DxpMeOqG0BS4mZtFpMuNFz4TSx6xhMIEe_PYyq9488RJ-eS_5I3RO8ILgll6TBWW44qw6QDOCuShZ0-BDNMO4IiUXTByjkxjfMSaEUzFDqyeIPmplodj6HuzgNoU3xeAShE1QbrQqFN3YdRnsIGhvVRq8y6Bwo7aQf80INp6iI6NshLOfd45e7-9elg_l-nn1uLxdl5rWdSobxQXtW22UaFnbNyyPrOp1RTnDnGJOmBa94IYZVXcNxYR3pAFR1S0YqDGdo4tpr49pkFEPCfSb9s6BTpLgmlStyOhyQrvgP0aISW6HqMFa5cCPUZJ8LsepWZPp1UR18DEGMHIXhq0Kn3mZ3BeVRP4UzfZmsvuz3xn-x39Z5W9W6ekXPfh8tA</recordid><startdate>20120415</startdate><enddate>20120415</enddate><creator>Millett, Paul C.</creator><creator>Tonks, Michael</creator><creator>Biner, S. B.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>OTOTI</scope></search><sort><creationdate>20120415</creationdate><title>Mesoscale modeling of intergranular bubble percolation in nuclear fuels</title><author>Millett, Paul C. ; Tonks, Michael ; Biner, S. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-5a893d6cfa9676d576cf72dc23870830817c9d98f7fa4b53018b15e9246efe403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>BUBBLE GROWTH</topic><topic>BUBBLES</topic><topic>COALESCENCE</topic><topic>FISSION</topic><topic>GRAIN BOUNDARIES</topic><topic>MATERIALS SCIENCE</topic><topic>Modeling and Simulation</topic><topic>NUCLEAR FUEL CYCLE AND FUEL MATERIALS</topic><topic>NUCLEAR FUELS</topic><topic>SHAPE</topic><topic>SIMULATION</topic><topic>URANIUM DIOXIDE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Millett, Paul C.</creatorcontrib><creatorcontrib>Tonks, Michael</creatorcontrib><creatorcontrib>Biner, S. B.</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL)</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Millett, Paul C.</au><au>Tonks, Michael</au><au>Biner, S. B.</au><aucorp>Idaho National Laboratory (INL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoscale modeling of intergranular bubble percolation in nuclear fuels</atitle><jtitle>Journal of applied physics</jtitle><date>2012-04-15</date><risdate>2012</risdate><volume>111</volume><issue>8</issue><spage>083511</spage><epage>083511-7</epage><pages>083511-083511-7</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Phase-field simulations are used to examine the variability of intergranular fission gas bubble growth and percolation on uranium dioxide grain boundaries on a mesoscopic length scale. Three key parameters are systematically varied in this study: the contact angle (or dihedral angle) defining the bubble shape, the initial bubble density on the grain boundary plane, and the ratio of the gas diffusivity on the grain boundary versus the grain interiors. The simulation results agree well with previous experimental data obtained for bubble densities and average bubble areas during coalescence events. Interestingly, the rate of percolation is found to be highly variable, with a large dependency on the contact angle and the initial bubble density and little-to-no dependency on the grain boundary gas diffusivity.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3702872</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2012-04, Vol.111 (8), p.083511-083511-7
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_1041269
source American Institute of Physics (AIP) Journals; AIP Digital Archive; Alma/SFX Local Collection
subjects BUBBLE GROWTH
BUBBLES
COALESCENCE
FISSION
GRAIN BOUNDARIES
MATERIALS SCIENCE
Modeling and Simulation
NUCLEAR FUEL CYCLE AND FUEL MATERIALS
NUCLEAR FUELS
SHAPE
SIMULATION
URANIUM DIOXIDE
title Mesoscale modeling of intergranular bubble percolation in nuclear fuels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A57%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoscale%20modeling%20of%20intergranular%20bubble%20percolation%20in%20nuclear%20fuels&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Millett,%20Paul%20C.&rft.aucorp=Idaho%20National%20Laboratory%20(INL)&rft.date=2012-04-15&rft.volume=111&rft.issue=8&rft.spage=083511&rft.epage=083511-7&rft.pages=083511-083511-7&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.3702872&rft_dat=%3Cproquest_osti_%3E1238108475%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1238108475&rft_id=info:pmid/&rfr_iscdi=true