Nano-sized lithium manganese oxide dispersed on carbon nanotubes for energy storage applications
Nano-sized lithium manganese oxide (LMO) dispersed on carbon nanotubes (CNT) has been synthesized successfully via a microwave-assisted hydrothermal reaction at 200 °C for 30 min using MnO 2-coated CNT and an aqueous LiOH solution. The initial specific capacity is 99.4 mAh/g at a 1.6 C-rate, and is...
Gespeichert in:
Veröffentlicht in: | Electrochemistry communications 2009-08, Vol.11 (8), p.1575-1578 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1578 |
---|---|
container_issue | 8 |
container_start_page | 1575 |
container_title | Electrochemistry communications |
container_volume | 11 |
creator | Ma, Sang-Bok Nam, Kyung-Wan Yoon, Won-Sub Bak, Seong-Min Yang, Xiao-Qing Cho, Byung-Won Kim, Kwang-Bum |
description | Nano-sized lithium manganese oxide (LMO) dispersed on carbon nanotubes (CNT) has been synthesized successfully via a microwave-assisted hydrothermal reaction at 200
°C for 30
min using MnO
2-coated CNT and an aqueous LiOH solution. The initial specific capacity is 99.4
mAh/g at a 1.6 C-rate, and is maintained at 99.1
mAh/g even at a 16 C-rate. The initial specific capacity is also maintained up to the 50th cycle to give 97% capacity retention. The LMO/CNT nanocomposite shows excellent power performance and good structural reversibility as an electrode material in energy storage systems, such as lithium-ion batteries and electrochemical capacitors. This synthetic strategy opens a new avenue for the effective and facile synthesis of lithium transition metal oxide/CNT nanocomposite. |
doi_str_mv | 10.1016/j.elecom.2009.05.058 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1040227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S138824810900277X</els_id><sourcerecordid>S138824810900277X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-899b2d5cd215fda9781d89fefa78a3d7bb48cf44aa7fdc64f4ef1cfe65147cf93</originalsourceid><addsrcrecordid>eNp9kEFr3DAQhU1oIdsk_yAHEejRW0mW19IlUEKTFEJ7Sc_OeDTa1eKVjOSUbn59tLj0WBiYOXxv5s2rqmvB14KLzZf9mkbCeFhLzs2at6X0WbUSumtqYbj8UOZG61oqLc6rTznvORfSmGZVvfyAEOvs38iy0c87_3pgBwhbCJSJxT_eErM-T5RyIWJgCGkoLRTZ_DpQZi4mRoHS9sjyHBNsicE0jR5h9jHky-qjgzHT1d9-Uf26__Z891g__Xz4fvf1qcZm08y1NmaQtkUrRessmE4Lq40jB52GxnbDoDQ6pQA6Z3GjnCIn0NGmFapDZ5qL6mbZG_Ps-4x-JtxhDIFw7gVXXMquQGqBMMWcE7l-Sv4A6ViI_hRlv--XKPtTlD1vS-ki-7zIJsgIo0sQ0Od_Wil026hOFe524ag8-ttTOvmggGR9Otmw0f__0Dv3Uo6M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nano-sized lithium manganese oxide dispersed on carbon nanotubes for energy storage applications</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ma, Sang-Bok ; Nam, Kyung-Wan ; Yoon, Won-Sub ; Bak, Seong-Min ; Yang, Xiao-Qing ; Cho, Byung-Won ; Kim, Kwang-Bum</creator><creatorcontrib>Ma, Sang-Bok ; Nam, Kyung-Wan ; Yoon, Won-Sub ; Bak, Seong-Min ; Yang, Xiao-Qing ; Cho, Byung-Won ; Kim, Kwang-Bum ; BROOKHAVEN NATIONAL LABORATORY (BNL)</creatorcontrib><description>Nano-sized lithium manganese oxide (LMO) dispersed on carbon nanotubes (CNT) has been synthesized successfully via a microwave-assisted hydrothermal reaction at 200
°C for 30
min using MnO
2-coated CNT and an aqueous LiOH solution. The initial specific capacity is 99.4
mAh/g at a 1.6 C-rate, and is maintained at 99.1
mAh/g even at a 16 C-rate. The initial specific capacity is also maintained up to the 50th cycle to give 97% capacity retention. The LMO/CNT nanocomposite shows excellent power performance and good structural reversibility as an electrode material in energy storage systems, such as lithium-ion batteries and electrochemical capacitors. This synthetic strategy opens a new avenue for the effective and facile synthesis of lithium transition metal oxide/CNT nanocomposite.</description><identifier>ISSN: 1388-2481</identifier><identifier>EISSN: 1873-1902</identifier><identifier>DOI: 10.1016/j.elecom.2009.05.058</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; Batteries ; CAPACITORS ; Capacitors. Resistors. Filters ; CAPACITY ; CARBON ; Carbon nanotube ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; electrochemical capacitor ; Electrochemical conversion: primary and secondary batteries, fuel cells ; ELECTRODES ; ENERGY STORAGE ; ENERGY STORAGE SYSTEMS ; Exact sciences and technology ; hybrid capacitor ; LITHIUM ; Lithium manganese oxide ; MANGANESE OXIDES ; Nanocomposite ; Nanoparticle ; NANOTUBES ; RETENTION ; stabilized lithium metal powder ; supercapacitor ; SYNTHESIS ; TRANSITION ELEMENTS ; Various equipment and components</subject><ispartof>Electrochemistry communications, 2009-08, Vol.11 (8), p.1575-1578</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-899b2d5cd215fda9781d89fefa78a3d7bb48cf44aa7fdc64f4ef1cfe65147cf93</citedby><cites>FETCH-LOGICAL-c363t-899b2d5cd215fda9781d89fefa78a3d7bb48cf44aa7fdc64f4ef1cfe65147cf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.elecom.2009.05.058$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21853474$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1040227$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Sang-Bok</creatorcontrib><creatorcontrib>Nam, Kyung-Wan</creatorcontrib><creatorcontrib>Yoon, Won-Sub</creatorcontrib><creatorcontrib>Bak, Seong-Min</creatorcontrib><creatorcontrib>Yang, Xiao-Qing</creatorcontrib><creatorcontrib>Cho, Byung-Won</creatorcontrib><creatorcontrib>Kim, Kwang-Bum</creatorcontrib><creatorcontrib>BROOKHAVEN NATIONAL LABORATORY (BNL)</creatorcontrib><title>Nano-sized lithium manganese oxide dispersed on carbon nanotubes for energy storage applications</title><title>Electrochemistry communications</title><description>Nano-sized lithium manganese oxide (LMO) dispersed on carbon nanotubes (CNT) has been synthesized successfully via a microwave-assisted hydrothermal reaction at 200
°C for 30
min using MnO
2-coated CNT and an aqueous LiOH solution. The initial specific capacity is 99.4
mAh/g at a 1.6 C-rate, and is maintained at 99.1
mAh/g even at a 16 C-rate. The initial specific capacity is also maintained up to the 50th cycle to give 97% capacity retention. The LMO/CNT nanocomposite shows excellent power performance and good structural reversibility as an electrode material in energy storage systems, such as lithium-ion batteries and electrochemical capacitors. This synthetic strategy opens a new avenue for the effective and facile synthesis of lithium transition metal oxide/CNT nanocomposite.</description><subject>Applied sciences</subject><subject>Batteries</subject><subject>CAPACITORS</subject><subject>Capacitors. Resistors. Filters</subject><subject>CAPACITY</subject><subject>CARBON</subject><subject>Carbon nanotube</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>electrochemical capacitor</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>ELECTRODES</subject><subject>ENERGY STORAGE</subject><subject>ENERGY STORAGE SYSTEMS</subject><subject>Exact sciences and technology</subject><subject>hybrid capacitor</subject><subject>LITHIUM</subject><subject>Lithium manganese oxide</subject><subject>MANGANESE OXIDES</subject><subject>Nanocomposite</subject><subject>Nanoparticle</subject><subject>NANOTUBES</subject><subject>RETENTION</subject><subject>stabilized lithium metal powder</subject><subject>supercapacitor</subject><subject>SYNTHESIS</subject><subject>TRANSITION ELEMENTS</subject><subject>Various equipment and components</subject><issn>1388-2481</issn><issn>1873-1902</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kEFr3DAQhU1oIdsk_yAHEejRW0mW19IlUEKTFEJ7Sc_OeDTa1eKVjOSUbn59tLj0WBiYOXxv5s2rqmvB14KLzZf9mkbCeFhLzs2at6X0WbUSumtqYbj8UOZG61oqLc6rTznvORfSmGZVvfyAEOvs38iy0c87_3pgBwhbCJSJxT_eErM-T5RyIWJgCGkoLRTZ_DpQZi4mRoHS9sjyHBNsicE0jR5h9jHky-qjgzHT1d9-Uf26__Z891g__Xz4fvf1qcZm08y1NmaQtkUrRessmE4Lq40jB52GxnbDoDQ6pQA6Z3GjnCIn0NGmFapDZ5qL6mbZG_Ps-4x-JtxhDIFw7gVXXMquQGqBMMWcE7l-Sv4A6ViI_hRlv--XKPtTlD1vS-ki-7zIJsgIo0sQ0Od_Wil026hOFe524ag8-ttTOvmggGR9Otmw0f__0Dv3Uo6M</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Ma, Sang-Bok</creator><creator>Nam, Kyung-Wan</creator><creator>Yoon, Won-Sub</creator><creator>Bak, Seong-Min</creator><creator>Yang, Xiao-Qing</creator><creator>Cho, Byung-Won</creator><creator>Kim, Kwang-Bum</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20090801</creationdate><title>Nano-sized lithium manganese oxide dispersed on carbon nanotubes for energy storage applications</title><author>Ma, Sang-Bok ; Nam, Kyung-Wan ; Yoon, Won-Sub ; Bak, Seong-Min ; Yang, Xiao-Qing ; Cho, Byung-Won ; Kim, Kwang-Bum</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-899b2d5cd215fda9781d89fefa78a3d7bb48cf44aa7fdc64f4ef1cfe65147cf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Batteries</topic><topic>CAPACITORS</topic><topic>Capacitors. Resistors. Filters</topic><topic>CAPACITY</topic><topic>CARBON</topic><topic>Carbon nanotube</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>electrochemical capacitor</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>ELECTRODES</topic><topic>ENERGY STORAGE</topic><topic>ENERGY STORAGE SYSTEMS</topic><topic>Exact sciences and technology</topic><topic>hybrid capacitor</topic><topic>LITHIUM</topic><topic>Lithium manganese oxide</topic><topic>MANGANESE OXIDES</topic><topic>Nanocomposite</topic><topic>Nanoparticle</topic><topic>NANOTUBES</topic><topic>RETENTION</topic><topic>stabilized lithium metal powder</topic><topic>supercapacitor</topic><topic>SYNTHESIS</topic><topic>TRANSITION ELEMENTS</topic><topic>Various equipment and components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Sang-Bok</creatorcontrib><creatorcontrib>Nam, Kyung-Wan</creatorcontrib><creatorcontrib>Yoon, Won-Sub</creatorcontrib><creatorcontrib>Bak, Seong-Min</creatorcontrib><creatorcontrib>Yang, Xiao-Qing</creatorcontrib><creatorcontrib>Cho, Byung-Won</creatorcontrib><creatorcontrib>Kim, Kwang-Bum</creatorcontrib><creatorcontrib>BROOKHAVEN NATIONAL LABORATORY (BNL)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Electrochemistry communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Sang-Bok</au><au>Nam, Kyung-Wan</au><au>Yoon, Won-Sub</au><au>Bak, Seong-Min</au><au>Yang, Xiao-Qing</au><au>Cho, Byung-Won</au><au>Kim, Kwang-Bum</au><aucorp>BROOKHAVEN NATIONAL LABORATORY (BNL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nano-sized lithium manganese oxide dispersed on carbon nanotubes for energy storage applications</atitle><jtitle>Electrochemistry communications</jtitle><date>2009-08-01</date><risdate>2009</risdate><volume>11</volume><issue>8</issue><spage>1575</spage><epage>1578</epage><pages>1575-1578</pages><issn>1388-2481</issn><eissn>1873-1902</eissn><abstract>Nano-sized lithium manganese oxide (LMO) dispersed on carbon nanotubes (CNT) has been synthesized successfully via a microwave-assisted hydrothermal reaction at 200
°C for 30
min using MnO
2-coated CNT and an aqueous LiOH solution. The initial specific capacity is 99.4
mAh/g at a 1.6 C-rate, and is maintained at 99.1
mAh/g even at a 16 C-rate. The initial specific capacity is also maintained up to the 50th cycle to give 97% capacity retention. The LMO/CNT nanocomposite shows excellent power performance and good structural reversibility as an electrode material in energy storage systems, such as lithium-ion batteries and electrochemical capacitors. This synthetic strategy opens a new avenue for the effective and facile synthesis of lithium transition metal oxide/CNT nanocomposite.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/j.elecom.2009.05.058</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-2481 |
ispartof | Electrochemistry communications, 2009-08, Vol.11 (8), p.1575-1578 |
issn | 1388-2481 1873-1902 |
language | eng |
recordid | cdi_osti_scitechconnect_1040227 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Batteries CAPACITORS Capacitors. Resistors. Filters CAPACITY CARBON Carbon nanotube Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering electrochemical capacitor Electrochemical conversion: primary and secondary batteries, fuel cells ELECTRODES ENERGY STORAGE ENERGY STORAGE SYSTEMS Exact sciences and technology hybrid capacitor LITHIUM Lithium manganese oxide MANGANESE OXIDES Nanocomposite Nanoparticle NANOTUBES RETENTION stabilized lithium metal powder supercapacitor SYNTHESIS TRANSITION ELEMENTS Various equipment and components |
title | Nano-sized lithium manganese oxide dispersed on carbon nanotubes for energy storage applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A48%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nano-sized%20lithium%20manganese%20oxide%20dispersed%20on%20carbon%20nanotubes%20for%20energy%20storage%20applications&rft.jtitle=Electrochemistry%20communications&rft.au=Ma,%20Sang-Bok&rft.aucorp=BROOKHAVEN%20NATIONAL%20LABORATORY%20(BNL)&rft.date=2009-08-01&rft.volume=11&rft.issue=8&rft.spage=1575&rft.epage=1578&rft.pages=1575-1578&rft.issn=1388-2481&rft.eissn=1873-1902&rft_id=info:doi/10.1016/j.elecom.2009.05.058&rft_dat=%3Celsevier_osti_%3ES138824810900277X%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S138824810900277X&rfr_iscdi=true |