Polymerization of Carbon Dioxide: A Chemistry View of Molecular-to-Nonmolecular Phase Transitions

Under high pressure, simple molecular solids transform into nonmolecular (extended) solids as compression energies approach the energies of strong covalent bonds in constituent chemical species. Unlike molecular and extended phase transitions, these exhibit path dependent phases, phase boundaries, p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2012-01, Vol.116 (3), p.2061-2067
Hauptverfasser: Sengupta, Amartya, Kim, Minseob, Yoo, Choong-Shik, Tse, John S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2067
container_issue 3
container_start_page 2061
container_title Journal of physical chemistry. C
container_volume 116
creator Sengupta, Amartya
Kim, Minseob
Yoo, Choong-Shik
Tse, John S
description Under high pressure, simple molecular solids transform into nonmolecular (extended) solids as compression energies approach the energies of strong covalent bonds in constituent chemical species. Unlike molecular and extended phase transitions, these exhibit path dependent phases, phase boundaries, phase metastabilities, and structural distortions that lead to large uncertainties in both experimental and theoretical phase diagrams. Here we present experimental and theoretical evidence that carbon dioxide polymerizes to extended phase V at 20 GPa, indicating a substantially lower equilibrium phase boundary than previously suggested. Clearly, these results indicate extended structures are inherently more stable above 20 GPa and the presence of a strong activation barrier hindering the polymerization in the intermediate pressure region between 20 and 40 GPa. Further, the present results advocate a chemistry view of molecular to nonmolecular phase transitions governed by constraints to kinetics and local energy minima that go beyond thermodynamics and are analogous to the graphite–diamond transition.
doi_str_mv 10.1021/jp204373t
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1038602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c498273466</sourcerecordid><originalsourceid>FETCH-LOGICAL-a382t-db4f626d51a4a5e9bcea0e137b2844304e62066cf5b32009d77281d34bbd42623</originalsourceid><addsrcrecordid>eNptkEtPwzAQhC0EEqVw4B9ESBw4BPxOyg2Fp1Sgh8I1WjuO6iqJK9sVlF9PokK5cNpZ6dvRziB0SvAlwZRcLVcUc5axuIdGZMJomnEh9neaZ4foKIQlxoJhwkYIZq7ZtMbbL4jWdYmrkwK86tWtdZ-2MtfJTVIsTGtD9Jvk3ZqPgXl2jdHrBnwaXfriuvZ3T2YLCCaZe-iCHRzDMTqooQnm5GeO0dv93bx4TKevD0_FzTQFltOYVorXkspKEOAgzERpA9gQlimac84wN5JiKXUtFKMYT6osozmpGFeq4lRSNkZnW18Xoi2DttHohXZdZ3QsCWa5xAN0sYW0dyF4U5crb1vwm54ohwLLXYE9e75lVxA0NHUfSduwO6BCkP4T8seBDuXSrX3Xx_zH7xuO3nvg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Polymerization of Carbon Dioxide: A Chemistry View of Molecular-to-Nonmolecular Phase Transitions</title><source>ACS Publications</source><creator>Sengupta, Amartya ; Kim, Minseob ; Yoo, Choong-Shik ; Tse, John S</creator><creatorcontrib>Sengupta, Amartya ; Kim, Minseob ; Yoo, Choong-Shik ; Tse, John S ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Under high pressure, simple molecular solids transform into nonmolecular (extended) solids as compression energies approach the energies of strong covalent bonds in constituent chemical species. Unlike molecular and extended phase transitions, these exhibit path dependent phases, phase boundaries, phase metastabilities, and structural distortions that lead to large uncertainties in both experimental and theoretical phase diagrams. Here we present experimental and theoretical evidence that carbon dioxide polymerizes to extended phase V at 20 GPa, indicating a substantially lower equilibrium phase boundary than previously suggested. Clearly, these results indicate extended structures are inherently more stable above 20 GPa and the presence of a strong activation barrier hindering the polymerization in the intermediate pressure region between 20 and 40 GPa. Further, the present results advocate a chemistry view of molecular to nonmolecular phase transitions governed by constraints to kinetics and local energy minima that go beyond thermodynamics and are analogous to the graphite–diamond transition.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp204373t</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>CARBON DIOXIDE ; CHEMISTRY ; COMPRESSION ; Condensed matter: structure, mechanical and thermal properties ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; KINETICS ; PHASE DIAGRAMS ; Physics ; POLYMERIZATION ; Solid-solid transitions ; Specific phase transitions ; THERMODYNAMICS</subject><ispartof>Journal of physical chemistry. C, 2012-01, Vol.116 (3), p.2061-2067</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a382t-db4f626d51a4a5e9bcea0e137b2844304e62066cf5b32009d77281d34bbd42623</citedby><cites>FETCH-LOGICAL-a382t-db4f626d51a4a5e9bcea0e137b2844304e62066cf5b32009d77281d34bbd42623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp204373t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp204373t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25513201$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1038602$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sengupta, Amartya</creatorcontrib><creatorcontrib>Kim, Minseob</creatorcontrib><creatorcontrib>Yoo, Choong-Shik</creatorcontrib><creatorcontrib>Tse, John S</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Polymerization of Carbon Dioxide: A Chemistry View of Molecular-to-Nonmolecular Phase Transitions</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Under high pressure, simple molecular solids transform into nonmolecular (extended) solids as compression energies approach the energies of strong covalent bonds in constituent chemical species. Unlike molecular and extended phase transitions, these exhibit path dependent phases, phase boundaries, phase metastabilities, and structural distortions that lead to large uncertainties in both experimental and theoretical phase diagrams. Here we present experimental and theoretical evidence that carbon dioxide polymerizes to extended phase V at 20 GPa, indicating a substantially lower equilibrium phase boundary than previously suggested. Clearly, these results indicate extended structures are inherently more stable above 20 GPa and the presence of a strong activation barrier hindering the polymerization in the intermediate pressure region between 20 and 40 GPa. Further, the present results advocate a chemistry view of molecular to nonmolecular phase transitions governed by constraints to kinetics and local energy minima that go beyond thermodynamics and are analogous to the graphite–diamond transition.</description><subject>CARBON DIOXIDE</subject><subject>CHEMISTRY</subject><subject>COMPRESSION</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>KINETICS</subject><subject>PHASE DIAGRAMS</subject><subject>Physics</subject><subject>POLYMERIZATION</subject><subject>Solid-solid transitions</subject><subject>Specific phase transitions</subject><subject>THERMODYNAMICS</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptkEtPwzAQhC0EEqVw4B9ESBw4BPxOyg2Fp1Sgh8I1WjuO6iqJK9sVlF9PokK5cNpZ6dvRziB0SvAlwZRcLVcUc5axuIdGZMJomnEh9neaZ4foKIQlxoJhwkYIZq7ZtMbbL4jWdYmrkwK86tWtdZ-2MtfJTVIsTGtD9Jvk3ZqPgXl2jdHrBnwaXfriuvZ3T2YLCCaZe-iCHRzDMTqooQnm5GeO0dv93bx4TKevD0_FzTQFltOYVorXkspKEOAgzERpA9gQlimac84wN5JiKXUtFKMYT6osozmpGFeq4lRSNkZnW18Xoi2DttHohXZdZ3QsCWa5xAN0sYW0dyF4U5crb1vwm54ohwLLXYE9e75lVxA0NHUfSduwO6BCkP4T8seBDuXSrX3Xx_zH7xuO3nvg</recordid><startdate>20120126</startdate><enddate>20120126</enddate><creator>Sengupta, Amartya</creator><creator>Kim, Minseob</creator><creator>Yoo, Choong-Shik</creator><creator>Tse, John S</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20120126</creationdate><title>Polymerization of Carbon Dioxide: A Chemistry View of Molecular-to-Nonmolecular Phase Transitions</title><author>Sengupta, Amartya ; Kim, Minseob ; Yoo, Choong-Shik ; Tse, John S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a382t-db4f626d51a4a5e9bcea0e137b2844304e62066cf5b32009d77281d34bbd42623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>CARBON DIOXIDE</topic><topic>CHEMISTRY</topic><topic>COMPRESSION</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>KINETICS</topic><topic>PHASE DIAGRAMS</topic><topic>Physics</topic><topic>POLYMERIZATION</topic><topic>Solid-solid transitions</topic><topic>Specific phase transitions</topic><topic>THERMODYNAMICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sengupta, Amartya</creatorcontrib><creatorcontrib>Kim, Minseob</creatorcontrib><creatorcontrib>Yoo, Choong-Shik</creatorcontrib><creatorcontrib>Tse, John S</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sengupta, Amartya</au><au>Kim, Minseob</au><au>Yoo, Choong-Shik</au><au>Tse, John S</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymerization of Carbon Dioxide: A Chemistry View of Molecular-to-Nonmolecular Phase Transitions</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2012-01-26</date><risdate>2012</risdate><volume>116</volume><issue>3</issue><spage>2061</spage><epage>2067</epage><pages>2061-2067</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Under high pressure, simple molecular solids transform into nonmolecular (extended) solids as compression energies approach the energies of strong covalent bonds in constituent chemical species. Unlike molecular and extended phase transitions, these exhibit path dependent phases, phase boundaries, phase metastabilities, and structural distortions that lead to large uncertainties in both experimental and theoretical phase diagrams. Here we present experimental and theoretical evidence that carbon dioxide polymerizes to extended phase V at 20 GPa, indicating a substantially lower equilibrium phase boundary than previously suggested. Clearly, these results indicate extended structures are inherently more stable above 20 GPa and the presence of a strong activation barrier hindering the polymerization in the intermediate pressure region between 20 and 40 GPa. Further, the present results advocate a chemistry view of molecular to nonmolecular phase transitions governed by constraints to kinetics and local energy minima that go beyond thermodynamics and are analogous to the graphite–diamond transition.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp204373t</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2012-01, Vol.116 (3), p.2061-2067
issn 1932-7447
1932-7455
language eng
recordid cdi_osti_scitechconnect_1038602
source ACS Publications
subjects CARBON DIOXIDE
CHEMISTRY
COMPRESSION
Condensed matter: structure, mechanical and thermal properties
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
KINETICS
PHASE DIAGRAMS
Physics
POLYMERIZATION
Solid-solid transitions
Specific phase transitions
THERMODYNAMICS
title Polymerization of Carbon Dioxide: A Chemistry View of Molecular-to-Nonmolecular Phase Transitions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A20%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymerization%20of%20Carbon%20Dioxide:%20A%20Chemistry%20View%20of%20Molecular-to-Nonmolecular%20Phase%20Transitions&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Sengupta,%20Amartya&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2012-01-26&rft.volume=116&rft.issue=3&rft.spage=2061&rft.epage=2067&rft.pages=2061-2067&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp204373t&rft_dat=%3Cacs_osti_%3Ec498273466%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true