Polymerization of Carbon Dioxide: A Chemistry View of Molecular-to-Nonmolecular Phase Transitions
Under high pressure, simple molecular solids transform into nonmolecular (extended) solids as compression energies approach the energies of strong covalent bonds in constituent chemical species. Unlike molecular and extended phase transitions, these exhibit path dependent phases, phase boundaries, p...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2012-01, Vol.116 (3), p.2061-2067 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2067 |
---|---|
container_issue | 3 |
container_start_page | 2061 |
container_title | Journal of physical chemistry. C |
container_volume | 116 |
creator | Sengupta, Amartya Kim, Minseob Yoo, Choong-Shik Tse, John S |
description | Under high pressure, simple molecular solids transform into nonmolecular (extended) solids as compression energies approach the energies of strong covalent bonds in constituent chemical species. Unlike molecular and extended phase transitions, these exhibit path dependent phases, phase boundaries, phase metastabilities, and structural distortions that lead to large uncertainties in both experimental and theoretical phase diagrams. Here we present experimental and theoretical evidence that carbon dioxide polymerizes to extended phase V at 20 GPa, indicating a substantially lower equilibrium phase boundary than previously suggested. Clearly, these results indicate extended structures are inherently more stable above 20 GPa and the presence of a strong activation barrier hindering the polymerization in the intermediate pressure region between 20 and 40 GPa. Further, the present results advocate a chemistry view of molecular to nonmolecular phase transitions governed by constraints to kinetics and local energy minima that go beyond thermodynamics and are analogous to the graphite–diamond transition. |
doi_str_mv | 10.1021/jp204373t |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1038602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c498273466</sourcerecordid><originalsourceid>FETCH-LOGICAL-a382t-db4f626d51a4a5e9bcea0e137b2844304e62066cf5b32009d77281d34bbd42623</originalsourceid><addsrcrecordid>eNptkEtPwzAQhC0EEqVw4B9ESBw4BPxOyg2Fp1Sgh8I1WjuO6iqJK9sVlF9PokK5cNpZ6dvRziB0SvAlwZRcLVcUc5axuIdGZMJomnEh9neaZ4foKIQlxoJhwkYIZq7ZtMbbL4jWdYmrkwK86tWtdZ-2MtfJTVIsTGtD9Jvk3ZqPgXl2jdHrBnwaXfriuvZ3T2YLCCaZe-iCHRzDMTqooQnm5GeO0dv93bx4TKevD0_FzTQFltOYVorXkspKEOAgzERpA9gQlimac84wN5JiKXUtFKMYT6osozmpGFeq4lRSNkZnW18Xoi2DttHohXZdZ3QsCWa5xAN0sYW0dyF4U5crb1vwm54ohwLLXYE9e75lVxA0NHUfSduwO6BCkP4T8seBDuXSrX3Xx_zH7xuO3nvg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Polymerization of Carbon Dioxide: A Chemistry View of Molecular-to-Nonmolecular Phase Transitions</title><source>ACS Publications</source><creator>Sengupta, Amartya ; Kim, Minseob ; Yoo, Choong-Shik ; Tse, John S</creator><creatorcontrib>Sengupta, Amartya ; Kim, Minseob ; Yoo, Choong-Shik ; Tse, John S ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Under high pressure, simple molecular solids transform into nonmolecular (extended) solids as compression energies approach the energies of strong covalent bonds in constituent chemical species. Unlike molecular and extended phase transitions, these exhibit path dependent phases, phase boundaries, phase metastabilities, and structural distortions that lead to large uncertainties in both experimental and theoretical phase diagrams. Here we present experimental and theoretical evidence that carbon dioxide polymerizes to extended phase V at 20 GPa, indicating a substantially lower equilibrium phase boundary than previously suggested. Clearly, these results indicate extended structures are inherently more stable above 20 GPa and the presence of a strong activation barrier hindering the polymerization in the intermediate pressure region between 20 and 40 GPa. Further, the present results advocate a chemistry view of molecular to nonmolecular phase transitions governed by constraints to kinetics and local energy minima that go beyond thermodynamics and are analogous to the graphite–diamond transition.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp204373t</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>CARBON DIOXIDE ; CHEMISTRY ; COMPRESSION ; Condensed matter: structure, mechanical and thermal properties ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; KINETICS ; PHASE DIAGRAMS ; Physics ; POLYMERIZATION ; Solid-solid transitions ; Specific phase transitions ; THERMODYNAMICS</subject><ispartof>Journal of physical chemistry. C, 2012-01, Vol.116 (3), p.2061-2067</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a382t-db4f626d51a4a5e9bcea0e137b2844304e62066cf5b32009d77281d34bbd42623</citedby><cites>FETCH-LOGICAL-a382t-db4f626d51a4a5e9bcea0e137b2844304e62066cf5b32009d77281d34bbd42623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp204373t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp204373t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25513201$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1038602$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sengupta, Amartya</creatorcontrib><creatorcontrib>Kim, Minseob</creatorcontrib><creatorcontrib>Yoo, Choong-Shik</creatorcontrib><creatorcontrib>Tse, John S</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Polymerization of Carbon Dioxide: A Chemistry View of Molecular-to-Nonmolecular Phase Transitions</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Under high pressure, simple molecular solids transform into nonmolecular (extended) solids as compression energies approach the energies of strong covalent bonds in constituent chemical species. Unlike molecular and extended phase transitions, these exhibit path dependent phases, phase boundaries, phase metastabilities, and structural distortions that lead to large uncertainties in both experimental and theoretical phase diagrams. Here we present experimental and theoretical evidence that carbon dioxide polymerizes to extended phase V at 20 GPa, indicating a substantially lower equilibrium phase boundary than previously suggested. Clearly, these results indicate extended structures are inherently more stable above 20 GPa and the presence of a strong activation barrier hindering the polymerization in the intermediate pressure region between 20 and 40 GPa. Further, the present results advocate a chemistry view of molecular to nonmolecular phase transitions governed by constraints to kinetics and local energy minima that go beyond thermodynamics and are analogous to the graphite–diamond transition.</description><subject>CARBON DIOXIDE</subject><subject>CHEMISTRY</subject><subject>COMPRESSION</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>KINETICS</subject><subject>PHASE DIAGRAMS</subject><subject>Physics</subject><subject>POLYMERIZATION</subject><subject>Solid-solid transitions</subject><subject>Specific phase transitions</subject><subject>THERMODYNAMICS</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNptkEtPwzAQhC0EEqVw4B9ESBw4BPxOyg2Fp1Sgh8I1WjuO6iqJK9sVlF9PokK5cNpZ6dvRziB0SvAlwZRcLVcUc5axuIdGZMJomnEh9neaZ4foKIQlxoJhwkYIZq7ZtMbbL4jWdYmrkwK86tWtdZ-2MtfJTVIsTGtD9Jvk3ZqPgXl2jdHrBnwaXfriuvZ3T2YLCCaZe-iCHRzDMTqooQnm5GeO0dv93bx4TKevD0_FzTQFltOYVorXkspKEOAgzERpA9gQlimac84wN5JiKXUtFKMYT6osozmpGFeq4lRSNkZnW18Xoi2DttHohXZdZ3QsCWa5xAN0sYW0dyF4U5crb1vwm54ohwLLXYE9e75lVxA0NHUfSduwO6BCkP4T8seBDuXSrX3Xx_zH7xuO3nvg</recordid><startdate>20120126</startdate><enddate>20120126</enddate><creator>Sengupta, Amartya</creator><creator>Kim, Minseob</creator><creator>Yoo, Choong-Shik</creator><creator>Tse, John S</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20120126</creationdate><title>Polymerization of Carbon Dioxide: A Chemistry View of Molecular-to-Nonmolecular Phase Transitions</title><author>Sengupta, Amartya ; Kim, Minseob ; Yoo, Choong-Shik ; Tse, John S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a382t-db4f626d51a4a5e9bcea0e137b2844304e62066cf5b32009d77281d34bbd42623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>CARBON DIOXIDE</topic><topic>CHEMISTRY</topic><topic>COMPRESSION</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>KINETICS</topic><topic>PHASE DIAGRAMS</topic><topic>Physics</topic><topic>POLYMERIZATION</topic><topic>Solid-solid transitions</topic><topic>Specific phase transitions</topic><topic>THERMODYNAMICS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sengupta, Amartya</creatorcontrib><creatorcontrib>Kim, Minseob</creatorcontrib><creatorcontrib>Yoo, Choong-Shik</creatorcontrib><creatorcontrib>Tse, John S</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sengupta, Amartya</au><au>Kim, Minseob</au><au>Yoo, Choong-Shik</au><au>Tse, John S</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polymerization of Carbon Dioxide: A Chemistry View of Molecular-to-Nonmolecular Phase Transitions</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2012-01-26</date><risdate>2012</risdate><volume>116</volume><issue>3</issue><spage>2061</spage><epage>2067</epage><pages>2061-2067</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Under high pressure, simple molecular solids transform into nonmolecular (extended) solids as compression energies approach the energies of strong covalent bonds in constituent chemical species. Unlike molecular and extended phase transitions, these exhibit path dependent phases, phase boundaries, phase metastabilities, and structural distortions that lead to large uncertainties in both experimental and theoretical phase diagrams. Here we present experimental and theoretical evidence that carbon dioxide polymerizes to extended phase V at 20 GPa, indicating a substantially lower equilibrium phase boundary than previously suggested. Clearly, these results indicate extended structures are inherently more stable above 20 GPa and the presence of a strong activation barrier hindering the polymerization in the intermediate pressure region between 20 and 40 GPa. Further, the present results advocate a chemistry view of molecular to nonmolecular phase transitions governed by constraints to kinetics and local energy minima that go beyond thermodynamics and are analogous to the graphite–diamond transition.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><doi>10.1021/jp204373t</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2012-01, Vol.116 (3), p.2061-2067 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_osti_scitechconnect_1038602 |
source | ACS Publications |
subjects | CARBON DIOXIDE CHEMISTRY COMPRESSION Condensed matter: structure, mechanical and thermal properties Equations of state, phase equilibria, and phase transitions Exact sciences and technology INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY KINETICS PHASE DIAGRAMS Physics POLYMERIZATION Solid-solid transitions Specific phase transitions THERMODYNAMICS |
title | Polymerization of Carbon Dioxide: A Chemistry View of Molecular-to-Nonmolecular Phase Transitions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A20%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polymerization%20of%20Carbon%20Dioxide:%20A%20Chemistry%20View%20of%20Molecular-to-Nonmolecular%20Phase%20Transitions&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Sengupta,%20Amartya&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2012-01-26&rft.volume=116&rft.issue=3&rft.spage=2061&rft.epage=2067&rft.pages=2061-2067&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp204373t&rft_dat=%3Cacs_osti_%3Ec498273466%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |