Advancing the use of minirhizotrons in wetlands

Background Wetlands store a substantial amount of carbon (C) in deep soil organic matter deposits, and play an important role in global fluxes of carbon dioxide and methane. Fine roots (i.e., ephemeral roots that are active in water and nutrient uptake) are recognized as important components of biog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant and soil 2012-03, Vol.352 (1-2), p.23-39
Hauptverfasser: Iversen, C. M., Murphy, M. T., Allen, M. F., Childs, J., Eissenstat, D. M., Lilleskov, E. A., Sarjala, T. M., Sloan, V. L., Sullivan, P. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39
container_issue 1-2
container_start_page 23
container_title Plant and soil
container_volume 352
creator Iversen, C. M.
Murphy, M. T.
Allen, M. F.
Childs, J.
Eissenstat, D. M.
Lilleskov, E. A.
Sarjala, T. M.
Sloan, V. L.
Sullivan, P. F.
description Background Wetlands store a substantial amount of carbon (C) in deep soil organic matter deposits, and play an important role in global fluxes of carbon dioxide and methane. Fine roots (i.e., ephemeral roots that are active in water and nutrient uptake) are recognized as important components of biogeochemical cycles in nutrient-limited wetland ecosystems. However, quantification of fine-root dynamics in wetlands has generally been limited to destructive approaches, possibly because of methodological difficulties associated with the unique environmental, soil, and plant community characteristics of these systems. Non-destructive minirhizotron technology has rarely been used in wetland ecosystems. Scope Our goal was to develop a consensus on, and a methodological framework for, the appropriate installation and use of minirhizotron technology in wetland ecosystems. Here, we discuss a number of potential solutions for the challenges associated with the deployment of minirhizotron technology in wetlands, including minirhizotron installation and anchorage, capture and analysis of minirhizotron images, and upscaling of minirhizotron data for analysis of biogeochemical pools and parameterization of land surface models. Conclusions The appropriate use of minirhizotron technology to examine relatively understudied fineroot dynamics in wetlands will advance our knowledge of ecosystem C and nutrient cycling in these globally important ecosystems.
doi_str_mv 10.1007/s11104-011-0953-1
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1036170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A362063951</galeid><jstor_id>24369077</jstor_id><sourcerecordid>A362063951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-83a0105a8e404b802f5275e5f1b1daf17b4aca4ef9652b0dfb087704c253a8923</originalsourceid><addsrcrecordid>eNp9kV9rFDEUxYMouLZ-AB-EQZA-TXtv_s48LkWrUPBFwbeQySS7WWaTmswq-umbYUr3zaeQ5HdOzs0h5B3CNQKom4KIwFtAbKEXrMUXZINCsVYAky_JBoDRFlT_8zV5U8oBlj3KDbnZjr9NtCHumnnvmlNxTfLNMcSQ9-FfmnOKpQmx-ePmycSxXJJX3kzFvX1aL8iPz5--335p77_dfb3d3reWSzG3HTOAIEznOPChA-oFVcIJjwOOxqMauLGGO99LQQcY_QCdUsAtFcx0PWUX5MPqm8ocdLFhdnZvU4zOzhrrTKigQlcr9JDTr5Mrsz6GYt1Uk7p0KrqXHSomlTrbPZOHdMqxTqB7qgCZYgt0vUI7Mzkdoq_j15TWjO4Y6tvOh3q-ZZKCZL3AKsBVYHMqJTuvH3I4mvy3JtRLLXqtRdda9FKLXjQfn5KYYs3k8_L75VlIhQROe145unKlXsWdy-fE_zN_v4oOZU75bMqZ7KF-wyOD2KLf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>927013737</pqid></control><display><type>article</type><title>Advancing the use of minirhizotrons in wetlands</title><source>Jstor Complete Legacy</source><source>SpringerLink Journals - AutoHoldings</source><creator>Iversen, C. M. ; Murphy, M. T. ; Allen, M. F. ; Childs, J. ; Eissenstat, D. M. ; Lilleskov, E. A. ; Sarjala, T. M. ; Sloan, V. L. ; Sullivan, P. F.</creator><creatorcontrib>Iversen, C. M. ; Murphy, M. T. ; Allen, M. F. ; Childs, J. ; Eissenstat, D. M. ; Lilleskov, E. A. ; Sarjala, T. M. ; Sloan, V. L. ; Sullivan, P. F. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Background Wetlands store a substantial amount of carbon (C) in deep soil organic matter deposits, and play an important role in global fluxes of carbon dioxide and methane. Fine roots (i.e., ephemeral roots that are active in water and nutrient uptake) are recognized as important components of biogeochemical cycles in nutrient-limited wetland ecosystems. However, quantification of fine-root dynamics in wetlands has generally been limited to destructive approaches, possibly because of methodological difficulties associated with the unique environmental, soil, and plant community characteristics of these systems. Non-destructive minirhizotron technology has rarely been used in wetland ecosystems. Scope Our goal was to develop a consensus on, and a methodological framework for, the appropriate installation and use of minirhizotron technology in wetland ecosystems. Here, we discuss a number of potential solutions for the challenges associated with the deployment of minirhizotron technology in wetlands, including minirhizotron installation and anchorage, capture and analysis of minirhizotron images, and upscaling of minirhizotron data for analysis of biogeochemical pools and parameterization of land surface models. Conclusions The appropriate use of minirhizotron technology to examine relatively understudied fineroot dynamics in wetlands will advance our knowledge of ecosystem C and nutrient cycling in these globally important ecosystems.</description><identifier>ISSN: 0032-079X</identifier><identifier>EISSN: 1573-5036</identifier><identifier>DOI: 10.1007/s11104-011-0953-1</identifier><identifier>CODEN: PLSOA2</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>03 NATURAL GAS ; Agronomy. Soil science and plant productions ; Animal, plant and microbial ecology ; Aquatic ecosystems ; Biogeochemical cycles ; Biogeochemistry ; Biological and medical sciences ; Biomedical and Life Sciences ; Biotechnology ; CARBON ; CARBON DIOXIDE ; Ecology ; Ecosystem studies ; ECOSYSTEMS ; Environment ; Environmental aspects ; fine roots ; Forest soils ; Fundamental and applied biological sciences. Psychology ; General agronomy. Plant production ; Lentic systems ; Life Sciences ; METHANE ; methodology ; minirhizotron ; Nutrient cycles ; Nutrient dynamics ; Nutrient uptake ; NUTRIENTS ; ORGANIC MATTER ; Peat ; Peatlands ; Plant communities ; Plant Physiology ; Plant roots ; Plant Sciences ; Plant-soil relationships ; Plants ; REVIEW ARTICLE ; Rooting depth ; Roots ; Soil ecology ; Soil organic matter ; Soil Science &amp; Conservation ; Soil-plant relationships. Soil fertility ; Soil-plant relationships. Soil fertility. Fertilization. Amendments ; SOILS ; WATER ; Wetland soils ; WETLANDS</subject><ispartof>Plant and soil, 2012-03, Vol.352 (1-2), p.23-39</ispartof><rights>Springer Science+Business Media B.V. (outside the USA) 2011</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2012 Springer</rights><rights>Springer Science+Business Media B.V. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-83a0105a8e404b802f5275e5f1b1daf17b4aca4ef9652b0dfb087704c253a8923</citedby><cites>FETCH-LOGICAL-c465t-83a0105a8e404b802f5275e5f1b1daf17b4aca4ef9652b0dfb087704c253a8923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24369077$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24369077$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,41464,42533,51294,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25604294$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1036170$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Iversen, C. M.</creatorcontrib><creatorcontrib>Murphy, M. T.</creatorcontrib><creatorcontrib>Allen, M. F.</creatorcontrib><creatorcontrib>Childs, J.</creatorcontrib><creatorcontrib>Eissenstat, D. M.</creatorcontrib><creatorcontrib>Lilleskov, E. A.</creatorcontrib><creatorcontrib>Sarjala, T. M.</creatorcontrib><creatorcontrib>Sloan, V. L.</creatorcontrib><creatorcontrib>Sullivan, P. F.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Advancing the use of minirhizotrons in wetlands</title><title>Plant and soil</title><addtitle>Plant Soil</addtitle><description>Background Wetlands store a substantial amount of carbon (C) in deep soil organic matter deposits, and play an important role in global fluxes of carbon dioxide and methane. Fine roots (i.e., ephemeral roots that are active in water and nutrient uptake) are recognized as important components of biogeochemical cycles in nutrient-limited wetland ecosystems. However, quantification of fine-root dynamics in wetlands has generally been limited to destructive approaches, possibly because of methodological difficulties associated with the unique environmental, soil, and plant community characteristics of these systems. Non-destructive minirhizotron technology has rarely been used in wetland ecosystems. Scope Our goal was to develop a consensus on, and a methodological framework for, the appropriate installation and use of minirhizotron technology in wetland ecosystems. Here, we discuss a number of potential solutions for the challenges associated with the deployment of minirhizotron technology in wetlands, including minirhizotron installation and anchorage, capture and analysis of minirhizotron images, and upscaling of minirhizotron data for analysis of biogeochemical pools and parameterization of land surface models. Conclusions The appropriate use of minirhizotron technology to examine relatively understudied fineroot dynamics in wetlands will advance our knowledge of ecosystem C and nutrient cycling in these globally important ecosystems.</description><subject>03 NATURAL GAS</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Animal, plant and microbial ecology</subject><subject>Aquatic ecosystems</subject><subject>Biogeochemical cycles</subject><subject>Biogeochemistry</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>CARBON</subject><subject>CARBON DIOXIDE</subject><subject>Ecology</subject><subject>Ecosystem studies</subject><subject>ECOSYSTEMS</subject><subject>Environment</subject><subject>Environmental aspects</subject><subject>fine roots</subject><subject>Forest soils</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General agronomy. Plant production</subject><subject>Lentic systems</subject><subject>Life Sciences</subject><subject>METHANE</subject><subject>methodology</subject><subject>minirhizotron</subject><subject>Nutrient cycles</subject><subject>Nutrient dynamics</subject><subject>Nutrient uptake</subject><subject>NUTRIENTS</subject><subject>ORGANIC MATTER</subject><subject>Peat</subject><subject>Peatlands</subject><subject>Plant communities</subject><subject>Plant Physiology</subject><subject>Plant roots</subject><subject>Plant Sciences</subject><subject>Plant-soil relationships</subject><subject>Plants</subject><subject>REVIEW ARTICLE</subject><subject>Rooting depth</subject><subject>Roots</subject><subject>Soil ecology</subject><subject>Soil organic matter</subject><subject>Soil Science &amp; Conservation</subject><subject>Soil-plant relationships. Soil fertility</subject><subject>Soil-plant relationships. Soil fertility. Fertilization. Amendments</subject><subject>SOILS</subject><subject>WATER</subject><subject>Wetland soils</subject><subject>WETLANDS</subject><issn>0032-079X</issn><issn>1573-5036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kV9rFDEUxYMouLZ-AB-EQZA-TXtv_s48LkWrUPBFwbeQySS7WWaTmswq-umbYUr3zaeQ5HdOzs0h5B3CNQKom4KIwFtAbKEXrMUXZINCsVYAky_JBoDRFlT_8zV5U8oBlj3KDbnZjr9NtCHumnnvmlNxTfLNMcSQ9-FfmnOKpQmx-ePmycSxXJJX3kzFvX1aL8iPz5--335p77_dfb3d3reWSzG3HTOAIEznOPChA-oFVcIJjwOOxqMauLGGO99LQQcY_QCdUsAtFcx0PWUX5MPqm8ocdLFhdnZvU4zOzhrrTKigQlcr9JDTr5Mrsz6GYt1Uk7p0KrqXHSomlTrbPZOHdMqxTqB7qgCZYgt0vUI7Mzkdoq_j15TWjO4Y6tvOh3q-ZZKCZL3AKsBVYHMqJTuvH3I4mvy3JtRLLXqtRdda9FKLXjQfn5KYYs3k8_L75VlIhQROe145unKlXsWdy-fE_zN_v4oOZU75bMqZ7KF-wyOD2KLf</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Iversen, C. M.</creator><creator>Murphy, M. T.</creator><creator>Allen, M. F.</creator><creator>Childs, J.</creator><creator>Eissenstat, D. M.</creator><creator>Lilleskov, E. A.</creator><creator>Sarjala, T. M.</creator><creator>Sloan, V. L.</creator><creator>Sullivan, P. F.</creator><general>Springer</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7X2</scope><scope>88A</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>F1W</scope><scope>H95</scope><scope>H96</scope><scope>L.G</scope><scope>OTOTI</scope></search><sort><creationdate>20120301</creationdate><title>Advancing the use of minirhizotrons in wetlands</title><author>Iversen, C. M. ; Murphy, M. T. ; Allen, M. F. ; Childs, J. ; Eissenstat, D. M. ; Lilleskov, E. A. ; Sarjala, T. M. ; Sloan, V. L. ; Sullivan, P. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-83a0105a8e404b802f5275e5f1b1daf17b4aca4ef9652b0dfb087704c253a8923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>03 NATURAL GAS</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Animal, plant and microbial ecology</topic><topic>Aquatic ecosystems</topic><topic>Biogeochemical cycles</topic><topic>Biogeochemistry</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>CARBON</topic><topic>CARBON DIOXIDE</topic><topic>Ecology</topic><topic>Ecosystem studies</topic><topic>ECOSYSTEMS</topic><topic>Environment</topic><topic>Environmental aspects</topic><topic>fine roots</topic><topic>Forest soils</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General agronomy. Plant production</topic><topic>Lentic systems</topic><topic>Life Sciences</topic><topic>METHANE</topic><topic>methodology</topic><topic>minirhizotron</topic><topic>Nutrient cycles</topic><topic>Nutrient dynamics</topic><topic>Nutrient uptake</topic><topic>NUTRIENTS</topic><topic>ORGANIC MATTER</topic><topic>Peat</topic><topic>Peatlands</topic><topic>Plant communities</topic><topic>Plant Physiology</topic><topic>Plant roots</topic><topic>Plant Sciences</topic><topic>Plant-soil relationships</topic><topic>Plants</topic><topic>REVIEW ARTICLE</topic><topic>Rooting depth</topic><topic>Roots</topic><topic>Soil ecology</topic><topic>Soil organic matter</topic><topic>Soil Science &amp; Conservation</topic><topic>Soil-plant relationships. Soil fertility</topic><topic>Soil-plant relationships. Soil fertility. Fertilization. Amendments</topic><topic>SOILS</topic><topic>WATER</topic><topic>Wetland soils</topic><topic>WETLANDS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iversen, C. M.</creatorcontrib><creatorcontrib>Murphy, M. T.</creatorcontrib><creatorcontrib>Allen, M. F.</creatorcontrib><creatorcontrib>Childs, J.</creatorcontrib><creatorcontrib>Eissenstat, D. M.</creatorcontrib><creatorcontrib>Lilleskov, E. A.</creatorcontrib><creatorcontrib>Sarjala, T. M.</creatorcontrib><creatorcontrib>Sloan, V. L.</creatorcontrib><creatorcontrib>Sullivan, P. F.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>OSTI.GOV</collection><jtitle>Plant and soil</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iversen, C. M.</au><au>Murphy, M. T.</au><au>Allen, M. F.</au><au>Childs, J.</au><au>Eissenstat, D. M.</au><au>Lilleskov, E. A.</au><au>Sarjala, T. M.</au><au>Sloan, V. L.</au><au>Sullivan, P. F.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancing the use of minirhizotrons in wetlands</atitle><jtitle>Plant and soil</jtitle><stitle>Plant Soil</stitle><date>2012-03-01</date><risdate>2012</risdate><volume>352</volume><issue>1-2</issue><spage>23</spage><epage>39</epage><pages>23-39</pages><issn>0032-079X</issn><eissn>1573-5036</eissn><coden>PLSOA2</coden><abstract>Background Wetlands store a substantial amount of carbon (C) in deep soil organic matter deposits, and play an important role in global fluxes of carbon dioxide and methane. Fine roots (i.e., ephemeral roots that are active in water and nutrient uptake) are recognized as important components of biogeochemical cycles in nutrient-limited wetland ecosystems. However, quantification of fine-root dynamics in wetlands has generally been limited to destructive approaches, possibly because of methodological difficulties associated with the unique environmental, soil, and plant community characteristics of these systems. Non-destructive minirhizotron technology has rarely been used in wetland ecosystems. Scope Our goal was to develop a consensus on, and a methodological framework for, the appropriate installation and use of minirhizotron technology in wetland ecosystems. Here, we discuss a number of potential solutions for the challenges associated with the deployment of minirhizotron technology in wetlands, including minirhizotron installation and anchorage, capture and analysis of minirhizotron images, and upscaling of minirhizotron data for analysis of biogeochemical pools and parameterization of land surface models. Conclusions The appropriate use of minirhizotron technology to examine relatively understudied fineroot dynamics in wetlands will advance our knowledge of ecosystem C and nutrient cycling in these globally important ecosystems.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1007/s11104-011-0953-1</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-079X
ispartof Plant and soil, 2012-03, Vol.352 (1-2), p.23-39
issn 0032-079X
1573-5036
language eng
recordid cdi_osti_scitechconnect_1036170
source Jstor Complete Legacy; SpringerLink Journals - AutoHoldings
subjects 03 NATURAL GAS
Agronomy. Soil science and plant productions
Animal, plant and microbial ecology
Aquatic ecosystems
Biogeochemical cycles
Biogeochemistry
Biological and medical sciences
Biomedical and Life Sciences
Biotechnology
CARBON
CARBON DIOXIDE
Ecology
Ecosystem studies
ECOSYSTEMS
Environment
Environmental aspects
fine roots
Forest soils
Fundamental and applied biological sciences. Psychology
General agronomy. Plant production
Lentic systems
Life Sciences
METHANE
methodology
minirhizotron
Nutrient cycles
Nutrient dynamics
Nutrient uptake
NUTRIENTS
ORGANIC MATTER
Peat
Peatlands
Plant communities
Plant Physiology
Plant roots
Plant Sciences
Plant-soil relationships
Plants
REVIEW ARTICLE
Rooting depth
Roots
Soil ecology
Soil organic matter
Soil Science & Conservation
Soil-plant relationships. Soil fertility
Soil-plant relationships. Soil fertility. Fertilization. Amendments
SOILS
WATER
Wetland soils
WETLANDS
title Advancing the use of minirhizotrons in wetlands
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A19%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancing%20the%20use%20of%20minirhizotrons%20in%20wetlands&rft.jtitle=Plant%20and%20soil&rft.au=Iversen,%20C.%20M.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2012-03-01&rft.volume=352&rft.issue=1-2&rft.spage=23&rft.epage=39&rft.pages=23-39&rft.issn=0032-079X&rft.eissn=1573-5036&rft.coden=PLSOA2&rft_id=info:doi/10.1007/s11104-011-0953-1&rft_dat=%3Cgale_osti_%3EA362063951%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=927013737&rft_id=info:pmid/&rft_galeid=A362063951&rft_jstor_id=24369077&rfr_iscdi=true