Advancing the use of minirhizotrons in wetlands
Background Wetlands store a substantial amount of carbon (C) in deep soil organic matter deposits, and play an important role in global fluxes of carbon dioxide and methane. Fine roots (i.e., ephemeral roots that are active in water and nutrient uptake) are recognized as important components of biog...
Gespeichert in:
Veröffentlicht in: | Plant and soil 2012-03, Vol.352 (1-2), p.23-39 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 39 |
---|---|
container_issue | 1-2 |
container_start_page | 23 |
container_title | Plant and soil |
container_volume | 352 |
creator | Iversen, C. M. Murphy, M. T. Allen, M. F. Childs, J. Eissenstat, D. M. Lilleskov, E. A. Sarjala, T. M. Sloan, V. L. Sullivan, P. F. |
description | Background Wetlands store a substantial amount of carbon (C) in deep soil organic matter deposits, and play an important role in global fluxes of carbon dioxide and methane. Fine roots (i.e., ephemeral roots that are active in water and nutrient uptake) are recognized as important components of biogeochemical cycles in nutrient-limited wetland ecosystems. However, quantification of fine-root dynamics in wetlands has generally been limited to destructive approaches, possibly because of methodological difficulties associated with the unique environmental, soil, and plant community characteristics of these systems. Non-destructive minirhizotron technology has rarely been used in wetland ecosystems. Scope Our goal was to develop a consensus on, and a methodological framework for, the appropriate installation and use of minirhizotron technology in wetland ecosystems. Here, we discuss a number of potential solutions for the challenges associated with the deployment of minirhizotron technology in wetlands, including minirhizotron installation and anchorage, capture and analysis of minirhizotron images, and upscaling of minirhizotron data for analysis of biogeochemical pools and parameterization of land surface models. Conclusions The appropriate use of minirhizotron technology to examine relatively understudied fineroot dynamics in wetlands will advance our knowledge of ecosystem C and nutrient cycling in these globally important ecosystems. |
doi_str_mv | 10.1007/s11104-011-0953-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1036170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A362063951</galeid><jstor_id>24369077</jstor_id><sourcerecordid>A362063951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-83a0105a8e404b802f5275e5f1b1daf17b4aca4ef9652b0dfb087704c253a8923</originalsourceid><addsrcrecordid>eNp9kV9rFDEUxYMouLZ-AB-EQZA-TXtv_s48LkWrUPBFwbeQySS7WWaTmswq-umbYUr3zaeQ5HdOzs0h5B3CNQKom4KIwFtAbKEXrMUXZINCsVYAky_JBoDRFlT_8zV5U8oBlj3KDbnZjr9NtCHumnnvmlNxTfLNMcSQ9-FfmnOKpQmx-ePmycSxXJJX3kzFvX1aL8iPz5--335p77_dfb3d3reWSzG3HTOAIEznOPChA-oFVcIJjwOOxqMauLGGO99LQQcY_QCdUsAtFcx0PWUX5MPqm8ocdLFhdnZvU4zOzhrrTKigQlcr9JDTr5Mrsz6GYt1Uk7p0KrqXHSomlTrbPZOHdMqxTqB7qgCZYgt0vUI7Mzkdoq_j15TWjO4Y6tvOh3q-ZZKCZL3AKsBVYHMqJTuvH3I4mvy3JtRLLXqtRdda9FKLXjQfn5KYYs3k8_L75VlIhQROe145unKlXsWdy-fE_zN_v4oOZU75bMqZ7KF-wyOD2KLf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>927013737</pqid></control><display><type>article</type><title>Advancing the use of minirhizotrons in wetlands</title><source>Jstor Complete Legacy</source><source>SpringerLink Journals - AutoHoldings</source><creator>Iversen, C. M. ; Murphy, M. T. ; Allen, M. F. ; Childs, J. ; Eissenstat, D. M. ; Lilleskov, E. A. ; Sarjala, T. M. ; Sloan, V. L. ; Sullivan, P. F.</creator><creatorcontrib>Iversen, C. M. ; Murphy, M. T. ; Allen, M. F. ; Childs, J. ; Eissenstat, D. M. ; Lilleskov, E. A. ; Sarjala, T. M. ; Sloan, V. L. ; Sullivan, P. F. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Background Wetlands store a substantial amount of carbon (C) in deep soil organic matter deposits, and play an important role in global fluxes of carbon dioxide and methane. Fine roots (i.e., ephemeral roots that are active in water and nutrient uptake) are recognized as important components of biogeochemical cycles in nutrient-limited wetland ecosystems. However, quantification of fine-root dynamics in wetlands has generally been limited to destructive approaches, possibly because of methodological difficulties associated with the unique environmental, soil, and plant community characteristics of these systems. Non-destructive minirhizotron technology has rarely been used in wetland ecosystems. Scope Our goal was to develop a consensus on, and a methodological framework for, the appropriate installation and use of minirhizotron technology in wetland ecosystems. Here, we discuss a number of potential solutions for the challenges associated with the deployment of minirhizotron technology in wetlands, including minirhizotron installation and anchorage, capture and analysis of minirhizotron images, and upscaling of minirhizotron data for analysis of biogeochemical pools and parameterization of land surface models. Conclusions The appropriate use of minirhizotron technology to examine relatively understudied fineroot dynamics in wetlands will advance our knowledge of ecosystem C and nutrient cycling in these globally important ecosystems.</description><identifier>ISSN: 0032-079X</identifier><identifier>EISSN: 1573-5036</identifier><identifier>DOI: 10.1007/s11104-011-0953-1</identifier><identifier>CODEN: PLSOA2</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>03 NATURAL GAS ; Agronomy. Soil science and plant productions ; Animal, plant and microbial ecology ; Aquatic ecosystems ; Biogeochemical cycles ; Biogeochemistry ; Biological and medical sciences ; Biomedical and Life Sciences ; Biotechnology ; CARBON ; CARBON DIOXIDE ; Ecology ; Ecosystem studies ; ECOSYSTEMS ; Environment ; Environmental aspects ; fine roots ; Forest soils ; Fundamental and applied biological sciences. Psychology ; General agronomy. Plant production ; Lentic systems ; Life Sciences ; METHANE ; methodology ; minirhizotron ; Nutrient cycles ; Nutrient dynamics ; Nutrient uptake ; NUTRIENTS ; ORGANIC MATTER ; Peat ; Peatlands ; Plant communities ; Plant Physiology ; Plant roots ; Plant Sciences ; Plant-soil relationships ; Plants ; REVIEW ARTICLE ; Rooting depth ; Roots ; Soil ecology ; Soil organic matter ; Soil Science & Conservation ; Soil-plant relationships. Soil fertility ; Soil-plant relationships. Soil fertility. Fertilization. Amendments ; SOILS ; WATER ; Wetland soils ; WETLANDS</subject><ispartof>Plant and soil, 2012-03, Vol.352 (1-2), p.23-39</ispartof><rights>Springer Science+Business Media B.V. (outside the USA) 2011</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2012 Springer</rights><rights>Springer Science+Business Media B.V. 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-83a0105a8e404b802f5275e5f1b1daf17b4aca4ef9652b0dfb087704c253a8923</citedby><cites>FETCH-LOGICAL-c465t-83a0105a8e404b802f5275e5f1b1daf17b4aca4ef9652b0dfb087704c253a8923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24369077$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24369077$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,41464,42533,51294,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25604294$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1036170$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Iversen, C. M.</creatorcontrib><creatorcontrib>Murphy, M. T.</creatorcontrib><creatorcontrib>Allen, M. F.</creatorcontrib><creatorcontrib>Childs, J.</creatorcontrib><creatorcontrib>Eissenstat, D. M.</creatorcontrib><creatorcontrib>Lilleskov, E. A.</creatorcontrib><creatorcontrib>Sarjala, T. M.</creatorcontrib><creatorcontrib>Sloan, V. L.</creatorcontrib><creatorcontrib>Sullivan, P. F.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Advancing the use of minirhizotrons in wetlands</title><title>Plant and soil</title><addtitle>Plant Soil</addtitle><description>Background Wetlands store a substantial amount of carbon (C) in deep soil organic matter deposits, and play an important role in global fluxes of carbon dioxide and methane. Fine roots (i.e., ephemeral roots that are active in water and nutrient uptake) are recognized as important components of biogeochemical cycles in nutrient-limited wetland ecosystems. However, quantification of fine-root dynamics in wetlands has generally been limited to destructive approaches, possibly because of methodological difficulties associated with the unique environmental, soil, and plant community characteristics of these systems. Non-destructive minirhizotron technology has rarely been used in wetland ecosystems. Scope Our goal was to develop a consensus on, and a methodological framework for, the appropriate installation and use of minirhizotron technology in wetland ecosystems. Here, we discuss a number of potential solutions for the challenges associated with the deployment of minirhizotron technology in wetlands, including minirhizotron installation and anchorage, capture and analysis of minirhizotron images, and upscaling of minirhizotron data for analysis of biogeochemical pools and parameterization of land surface models. Conclusions The appropriate use of minirhizotron technology to examine relatively understudied fineroot dynamics in wetlands will advance our knowledge of ecosystem C and nutrient cycling in these globally important ecosystems.</description><subject>03 NATURAL GAS</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Animal, plant and microbial ecology</subject><subject>Aquatic ecosystems</subject><subject>Biogeochemical cycles</subject><subject>Biogeochemistry</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>CARBON</subject><subject>CARBON DIOXIDE</subject><subject>Ecology</subject><subject>Ecosystem studies</subject><subject>ECOSYSTEMS</subject><subject>Environment</subject><subject>Environmental aspects</subject><subject>fine roots</subject><subject>Forest soils</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General agronomy. Plant production</subject><subject>Lentic systems</subject><subject>Life Sciences</subject><subject>METHANE</subject><subject>methodology</subject><subject>minirhizotron</subject><subject>Nutrient cycles</subject><subject>Nutrient dynamics</subject><subject>Nutrient uptake</subject><subject>NUTRIENTS</subject><subject>ORGANIC MATTER</subject><subject>Peat</subject><subject>Peatlands</subject><subject>Plant communities</subject><subject>Plant Physiology</subject><subject>Plant roots</subject><subject>Plant Sciences</subject><subject>Plant-soil relationships</subject><subject>Plants</subject><subject>REVIEW ARTICLE</subject><subject>Rooting depth</subject><subject>Roots</subject><subject>Soil ecology</subject><subject>Soil organic matter</subject><subject>Soil Science & Conservation</subject><subject>Soil-plant relationships. Soil fertility</subject><subject>Soil-plant relationships. Soil fertility. Fertilization. Amendments</subject><subject>SOILS</subject><subject>WATER</subject><subject>Wetland soils</subject><subject>WETLANDS</subject><issn>0032-079X</issn><issn>1573-5036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kV9rFDEUxYMouLZ-AB-EQZA-TXtv_s48LkWrUPBFwbeQySS7WWaTmswq-umbYUr3zaeQ5HdOzs0h5B3CNQKom4KIwFtAbKEXrMUXZINCsVYAky_JBoDRFlT_8zV5U8oBlj3KDbnZjr9NtCHumnnvmlNxTfLNMcSQ9-FfmnOKpQmx-ePmycSxXJJX3kzFvX1aL8iPz5--335p77_dfb3d3reWSzG3HTOAIEznOPChA-oFVcIJjwOOxqMauLGGO99LQQcY_QCdUsAtFcx0PWUX5MPqm8ocdLFhdnZvU4zOzhrrTKigQlcr9JDTr5Mrsz6GYt1Uk7p0KrqXHSomlTrbPZOHdMqxTqB7qgCZYgt0vUI7Mzkdoq_j15TWjO4Y6tvOh3q-ZZKCZL3AKsBVYHMqJTuvH3I4mvy3JtRLLXqtRdda9FKLXjQfn5KYYs3k8_L75VlIhQROe145unKlXsWdy-fE_zN_v4oOZU75bMqZ7KF-wyOD2KLf</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Iversen, C. M.</creator><creator>Murphy, M. T.</creator><creator>Allen, M. F.</creator><creator>Childs, J.</creator><creator>Eissenstat, D. M.</creator><creator>Lilleskov, E. A.</creator><creator>Sarjala, T. M.</creator><creator>Sloan, V. L.</creator><creator>Sullivan, P. F.</creator><general>Springer</general><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7X2</scope><scope>88A</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>F1W</scope><scope>H95</scope><scope>H96</scope><scope>L.G</scope><scope>OTOTI</scope></search><sort><creationdate>20120301</creationdate><title>Advancing the use of minirhizotrons in wetlands</title><author>Iversen, C. M. ; Murphy, M. T. ; Allen, M. F. ; Childs, J. ; Eissenstat, D. M. ; Lilleskov, E. A. ; Sarjala, T. M. ; Sloan, V. L. ; Sullivan, P. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-83a0105a8e404b802f5275e5f1b1daf17b4aca4ef9652b0dfb087704c253a8923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>03 NATURAL GAS</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Animal, plant and microbial ecology</topic><topic>Aquatic ecosystems</topic><topic>Biogeochemical cycles</topic><topic>Biogeochemistry</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>CARBON</topic><topic>CARBON DIOXIDE</topic><topic>Ecology</topic><topic>Ecosystem studies</topic><topic>ECOSYSTEMS</topic><topic>Environment</topic><topic>Environmental aspects</topic><topic>fine roots</topic><topic>Forest soils</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General agronomy. Plant production</topic><topic>Lentic systems</topic><topic>Life Sciences</topic><topic>METHANE</topic><topic>methodology</topic><topic>minirhizotron</topic><topic>Nutrient cycles</topic><topic>Nutrient dynamics</topic><topic>Nutrient uptake</topic><topic>NUTRIENTS</topic><topic>ORGANIC MATTER</topic><topic>Peat</topic><topic>Peatlands</topic><topic>Plant communities</topic><topic>Plant Physiology</topic><topic>Plant roots</topic><topic>Plant Sciences</topic><topic>Plant-soil relationships</topic><topic>Plants</topic><topic>REVIEW ARTICLE</topic><topic>Rooting depth</topic><topic>Roots</topic><topic>Soil ecology</topic><topic>Soil organic matter</topic><topic>Soil Science & Conservation</topic><topic>Soil-plant relationships. Soil fertility</topic><topic>Soil-plant relationships. Soil fertility. Fertilization. Amendments</topic><topic>SOILS</topic><topic>WATER</topic><topic>Wetland soils</topic><topic>WETLANDS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iversen, C. M.</creatorcontrib><creatorcontrib>Murphy, M. T.</creatorcontrib><creatorcontrib>Allen, M. F.</creatorcontrib><creatorcontrib>Childs, J.</creatorcontrib><creatorcontrib>Eissenstat, D. M.</creatorcontrib><creatorcontrib>Lilleskov, E. A.</creatorcontrib><creatorcontrib>Sarjala, T. M.</creatorcontrib><creatorcontrib>Sloan, V. L.</creatorcontrib><creatorcontrib>Sullivan, P. F.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>OSTI.GOV</collection><jtitle>Plant and soil</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iversen, C. M.</au><au>Murphy, M. T.</au><au>Allen, M. F.</au><au>Childs, J.</au><au>Eissenstat, D. M.</au><au>Lilleskov, E. A.</au><au>Sarjala, T. M.</au><au>Sloan, V. L.</au><au>Sullivan, P. F.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancing the use of minirhizotrons in wetlands</atitle><jtitle>Plant and soil</jtitle><stitle>Plant Soil</stitle><date>2012-03-01</date><risdate>2012</risdate><volume>352</volume><issue>1-2</issue><spage>23</spage><epage>39</epage><pages>23-39</pages><issn>0032-079X</issn><eissn>1573-5036</eissn><coden>PLSOA2</coden><abstract>Background Wetlands store a substantial amount of carbon (C) in deep soil organic matter deposits, and play an important role in global fluxes of carbon dioxide and methane. Fine roots (i.e., ephemeral roots that are active in water and nutrient uptake) are recognized as important components of biogeochemical cycles in nutrient-limited wetland ecosystems. However, quantification of fine-root dynamics in wetlands has generally been limited to destructive approaches, possibly because of methodological difficulties associated with the unique environmental, soil, and plant community characteristics of these systems. Non-destructive minirhizotron technology has rarely been used in wetland ecosystems. Scope Our goal was to develop a consensus on, and a methodological framework for, the appropriate installation and use of minirhizotron technology in wetland ecosystems. Here, we discuss a number of potential solutions for the challenges associated with the deployment of minirhizotron technology in wetlands, including minirhizotron installation and anchorage, capture and analysis of minirhizotron images, and upscaling of minirhizotron data for analysis of biogeochemical pools and parameterization of land surface models. Conclusions The appropriate use of minirhizotron technology to examine relatively understudied fineroot dynamics in wetlands will advance our knowledge of ecosystem C and nutrient cycling in these globally important ecosystems.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1007/s11104-011-0953-1</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-079X |
ispartof | Plant and soil, 2012-03, Vol.352 (1-2), p.23-39 |
issn | 0032-079X 1573-5036 |
language | eng |
recordid | cdi_osti_scitechconnect_1036170 |
source | Jstor Complete Legacy; SpringerLink Journals - AutoHoldings |
subjects | 03 NATURAL GAS Agronomy. Soil science and plant productions Animal, plant and microbial ecology Aquatic ecosystems Biogeochemical cycles Biogeochemistry Biological and medical sciences Biomedical and Life Sciences Biotechnology CARBON CARBON DIOXIDE Ecology Ecosystem studies ECOSYSTEMS Environment Environmental aspects fine roots Forest soils Fundamental and applied biological sciences. Psychology General agronomy. Plant production Lentic systems Life Sciences METHANE methodology minirhizotron Nutrient cycles Nutrient dynamics Nutrient uptake NUTRIENTS ORGANIC MATTER Peat Peatlands Plant communities Plant Physiology Plant roots Plant Sciences Plant-soil relationships Plants REVIEW ARTICLE Rooting depth Roots Soil ecology Soil organic matter Soil Science & Conservation Soil-plant relationships. Soil fertility Soil-plant relationships. Soil fertility. Fertilization. Amendments SOILS WATER Wetland soils WETLANDS |
title | Advancing the use of minirhizotrons in wetlands |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A19%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancing%20the%20use%20of%20minirhizotrons%20in%20wetlands&rft.jtitle=Plant%20and%20soil&rft.au=Iversen,%20C.%20M.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2012-03-01&rft.volume=352&rft.issue=1-2&rft.spage=23&rft.epage=39&rft.pages=23-39&rft.issn=0032-079X&rft.eissn=1573-5036&rft.coden=PLSOA2&rft_id=info:doi/10.1007/s11104-011-0953-1&rft_dat=%3Cgale_osti_%3EA362063951%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=927013737&rft_id=info:pmid/&rft_galeid=A362063951&rft_jstor_id=24369077&rfr_iscdi=true |