Insertion Mechanism of a Poly(ethylene oxide)-poly(butylene oxide) Block Copolymer into a DPPC Monolayer

Interactions between amphiphilic block copolymers and lipids are of medical interest for applications such as drug delivery and the restoration of damaged cell membranes. A series of monodisperse poly(ethylene oxide)-poly(butylene oxide) (EOBO) block copolymers were obtained with two ratios of hydro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2011-09, Vol.27 (18), p.11444-11450
Hauptverfasser: Leiske, Danielle L, Meckes, Brian, Miller, Chad E, Wu, Cynthia, Walker, Travis W, Lin, Binhua, Meron, Mati, Ketelson, Howard A, Toney, Michael F, Fuller, Gerald G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11450
container_issue 18
container_start_page 11444
container_title Langmuir
container_volume 27
creator Leiske, Danielle L
Meckes, Brian
Miller, Chad E
Wu, Cynthia
Walker, Travis W
Lin, Binhua
Meron, Mati
Ketelson, Howard A
Toney, Michael F
Fuller, Gerald G
description Interactions between amphiphilic block copolymers and lipids are of medical interest for applications such as drug delivery and the restoration of damaged cell membranes. A series of monodisperse poly(ethylene oxide)-poly(butylene oxide) (EOBO) block copolymers were obtained with two ratios of hydrophilic/hydrophobic block lengths. We have explored the surface activity of EOBO at a clean interface and under 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayers as a simple cell membrane model. At the same subphase concentration, EOBO achieved higher equilibrium surface pressures under DPPC compared to a bare interface, and the surface activity was improved with longer poly(butylene oxide) blocks. Further investigation of the DPPC/EOBO monolayers showed that combined films exhibited similar surface rheology compared to pure DPPC at the same surface pressures. DPPC/EOBO phase separation was observed in fluorescently doped monolayers, and within the liquid-expanded liquid-condensed coexistence region for DPPC, EOBO did not drastically alter the liquid-condensed domain shapes. Grazing incidence X-ray diffraction (GIXD) and X-ray reflectivity (XRR) quantitatively confirmed that the lattice spacings and tilt of DPPC in lipid-rich regions of the monolayer were nearly equivalent to those of a pure DPPC monolayer at the same surface pressures.
doi_str_mv 10.1021/la2016879
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1028503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>889445610</sourcerecordid><originalsourceid>FETCH-LOGICAL-a371t-3f1f466f7193306d6a5d73a9fb2c34e9e3e8d44a9126aa93f8f4c4500084cc0c3</originalsourceid><addsrcrecordid>eNptkEFvFCEUgInR2G314B8wxMRoD1NhYBg46lbbJm3cg54nLPPIUhlYgUncfy-bXdsePJE8vnwv70PoDSUXlLT0k9ctoUL26hla0K4lTSfb_jlakJ6zpueCnaDTnO8JIYpx9RKdtFQy3olugTY3IUMqLgZ8B2ajg8sTjhZrvIp-9xHKZuchAI5_3AjnzXY_XM_l6RB_8dH8wsu4_5wgYRdKrILL1WqJ72KIXu8gvUIvrPYZXh_fM_Tz29cfy-vm9vvVzfLzbaNZT0vDLLVcCNtTxRgRo9Dd2DOt7Lo1jIMCBnLkXCvaCq0Vs9Jyw7t6muTGEMPO0LuDN-bihmxcqWeZGAKYMtRasiOsQh8O0DbF3zPkMkwuG_BeB4hzHqRUvPahpJLnB9KkmHMCO2yTm3TaVddeR4eH-JV9e7TO6wnGB_Jf7Qq8PwI6G-1t0sG4_MjxjrVUqEdOmzzcxzmFWuw_C_8CVZiWRQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889445610</pqid></control><display><type>article</type><title>Insertion Mechanism of a Poly(ethylene oxide)-poly(butylene oxide) Block Copolymer into a DPPC Monolayer</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Leiske, Danielle L ; Meckes, Brian ; Miller, Chad E ; Wu, Cynthia ; Walker, Travis W ; Lin, Binhua ; Meron, Mati ; Ketelson, Howard A ; Toney, Michael F ; Fuller, Gerald G</creator><creatorcontrib>Leiske, Danielle L ; Meckes, Brian ; Miller, Chad E ; Wu, Cynthia ; Walker, Travis W ; Lin, Binhua ; Meron, Mati ; Ketelson, Howard A ; Toney, Michael F ; Fuller, Gerald G ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Interactions between amphiphilic block copolymers and lipids are of medical interest for applications such as drug delivery and the restoration of damaged cell membranes. A series of monodisperse poly(ethylene oxide)-poly(butylene oxide) (EOBO) block copolymers were obtained with two ratios of hydrophilic/hydrophobic block lengths. We have explored the surface activity of EOBO at a clean interface and under 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayers as a simple cell membrane model. At the same subphase concentration, EOBO achieved higher equilibrium surface pressures under DPPC compared to a bare interface, and the surface activity was improved with longer poly(butylene oxide) blocks. Further investigation of the DPPC/EOBO monolayers showed that combined films exhibited similar surface rheology compared to pure DPPC at the same surface pressures. DPPC/EOBO phase separation was observed in fluorescently doped monolayers, and within the liquid-expanded liquid-condensed coexistence region for DPPC, EOBO did not drastically alter the liquid-condensed domain shapes. Grazing incidence X-ray diffraction (GIXD) and X-ray reflectivity (XRR) quantitatively confirmed that the lattice spacings and tilt of DPPC in lipid-rich regions of the monolayer were nearly equivalent to those of a pure DPPC monolayer at the same surface pressures.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la2016879</identifier><identifier>PMID: 21834565</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>1,2-Dipalmitoylphosphatidylcholine - chemistry ; CELL MEMBRANES ; Chemistry ; Colloidal state and disperse state ; COPOLYMERS ; Epoxy Compounds - chemistry ; Exact sciences and technology ; General and physical chemistry ; Interfaces: Adsorption, Reactions, Films, Forces ; LIPIDS ; MATERIALS SCIENCE ; Membranes ; Microscopy, Fluorescence ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Polyethylene Glycols - chemistry ; REFLECTIVITY ; RHEOLOGY ; Surface physical chemistry ; Surface Properties ; X-RAY DIFFRACTION</subject><ispartof>Langmuir, 2011-09, Vol.27 (18), p.11444-11450</ispartof><rights>Copyright © 2011 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>2011 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a371t-3f1f466f7193306d6a5d73a9fb2c34e9e3e8d44a9126aa93f8f4c4500084cc0c3</citedby><cites>FETCH-LOGICAL-a371t-3f1f466f7193306d6a5d73a9fb2c34e9e3e8d44a9126aa93f8f4c4500084cc0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la2016879$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la2016879$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24532169$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21834565$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1028503$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Leiske, Danielle L</creatorcontrib><creatorcontrib>Meckes, Brian</creatorcontrib><creatorcontrib>Miller, Chad E</creatorcontrib><creatorcontrib>Wu, Cynthia</creatorcontrib><creatorcontrib>Walker, Travis W</creatorcontrib><creatorcontrib>Lin, Binhua</creatorcontrib><creatorcontrib>Meron, Mati</creatorcontrib><creatorcontrib>Ketelson, Howard A</creatorcontrib><creatorcontrib>Toney, Michael F</creatorcontrib><creatorcontrib>Fuller, Gerald G</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Insertion Mechanism of a Poly(ethylene oxide)-poly(butylene oxide) Block Copolymer into a DPPC Monolayer</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Interactions between amphiphilic block copolymers and lipids are of medical interest for applications such as drug delivery and the restoration of damaged cell membranes. A series of monodisperse poly(ethylene oxide)-poly(butylene oxide) (EOBO) block copolymers were obtained with two ratios of hydrophilic/hydrophobic block lengths. We have explored the surface activity of EOBO at a clean interface and under 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayers as a simple cell membrane model. At the same subphase concentration, EOBO achieved higher equilibrium surface pressures under DPPC compared to a bare interface, and the surface activity was improved with longer poly(butylene oxide) blocks. Further investigation of the DPPC/EOBO monolayers showed that combined films exhibited similar surface rheology compared to pure DPPC at the same surface pressures. DPPC/EOBO phase separation was observed in fluorescently doped monolayers, and within the liquid-expanded liquid-condensed coexistence region for DPPC, EOBO did not drastically alter the liquid-condensed domain shapes. Grazing incidence X-ray diffraction (GIXD) and X-ray reflectivity (XRR) quantitatively confirmed that the lattice spacings and tilt of DPPC in lipid-rich regions of the monolayer were nearly equivalent to those of a pure DPPC monolayer at the same surface pressures.</description><subject>1,2-Dipalmitoylphosphatidylcholine - chemistry</subject><subject>CELL MEMBRANES</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>COPOLYMERS</subject><subject>Epoxy Compounds - chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Interfaces: Adsorption, Reactions, Films, Forces</subject><subject>LIPIDS</subject><subject>MATERIALS SCIENCE</subject><subject>Membranes</subject><subject>Microscopy, Fluorescence</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Polyethylene Glycols - chemistry</subject><subject>REFLECTIVITY</subject><subject>RHEOLOGY</subject><subject>Surface physical chemistry</subject><subject>Surface Properties</subject><subject>X-RAY DIFFRACTION</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkEFvFCEUgInR2G314B8wxMRoD1NhYBg46lbbJm3cg54nLPPIUhlYgUncfy-bXdsePJE8vnwv70PoDSUXlLT0k9ctoUL26hla0K4lTSfb_jlakJ6zpueCnaDTnO8JIYpx9RKdtFQy3olugTY3IUMqLgZ8B2ajg8sTjhZrvIp-9xHKZuchAI5_3AjnzXY_XM_l6RB_8dH8wsu4_5wgYRdKrILL1WqJ72KIXu8gvUIvrPYZXh_fM_Tz29cfy-vm9vvVzfLzbaNZT0vDLLVcCNtTxRgRo9Dd2DOt7Lo1jIMCBnLkXCvaCq0Vs9Jyw7t6muTGEMPO0LuDN-bihmxcqWeZGAKYMtRasiOsQh8O0DbF3zPkMkwuG_BeB4hzHqRUvPahpJLnB9KkmHMCO2yTm3TaVddeR4eH-JV9e7TO6wnGB_Jf7Qq8PwI6G-1t0sG4_MjxjrVUqEdOmzzcxzmFWuw_C_8CVZiWRQ</recordid><startdate>20110920</startdate><enddate>20110920</enddate><creator>Leiske, Danielle L</creator><creator>Meckes, Brian</creator><creator>Miller, Chad E</creator><creator>Wu, Cynthia</creator><creator>Walker, Travis W</creator><creator>Lin, Binhua</creator><creator>Meron, Mati</creator><creator>Ketelson, Howard A</creator><creator>Toney, Michael F</creator><creator>Fuller, Gerald G</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20110920</creationdate><title>Insertion Mechanism of a Poly(ethylene oxide)-poly(butylene oxide) Block Copolymer into a DPPC Monolayer</title><author>Leiske, Danielle L ; Meckes, Brian ; Miller, Chad E ; Wu, Cynthia ; Walker, Travis W ; Lin, Binhua ; Meron, Mati ; Ketelson, Howard A ; Toney, Michael F ; Fuller, Gerald G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a371t-3f1f466f7193306d6a5d73a9fb2c34e9e3e8d44a9126aa93f8f4c4500084cc0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>1,2-Dipalmitoylphosphatidylcholine - chemistry</topic><topic>CELL MEMBRANES</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>COPOLYMERS</topic><topic>Epoxy Compounds - chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Interfaces: Adsorption, Reactions, Films, Forces</topic><topic>LIPIDS</topic><topic>MATERIALS SCIENCE</topic><topic>Membranes</topic><topic>Microscopy, Fluorescence</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Polyethylene Glycols - chemistry</topic><topic>REFLECTIVITY</topic><topic>RHEOLOGY</topic><topic>Surface physical chemistry</topic><topic>Surface Properties</topic><topic>X-RAY DIFFRACTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leiske, Danielle L</creatorcontrib><creatorcontrib>Meckes, Brian</creatorcontrib><creatorcontrib>Miller, Chad E</creatorcontrib><creatorcontrib>Wu, Cynthia</creatorcontrib><creatorcontrib>Walker, Travis W</creatorcontrib><creatorcontrib>Lin, Binhua</creatorcontrib><creatorcontrib>Meron, Mati</creatorcontrib><creatorcontrib>Ketelson, Howard A</creatorcontrib><creatorcontrib>Toney, Michael F</creatorcontrib><creatorcontrib>Fuller, Gerald G</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leiske, Danielle L</au><au>Meckes, Brian</au><au>Miller, Chad E</au><au>Wu, Cynthia</au><au>Walker, Travis W</au><au>Lin, Binhua</au><au>Meron, Mati</au><au>Ketelson, Howard A</au><au>Toney, Michael F</au><au>Fuller, Gerald G</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insertion Mechanism of a Poly(ethylene oxide)-poly(butylene oxide) Block Copolymer into a DPPC Monolayer</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2011-09-20</date><risdate>2011</risdate><volume>27</volume><issue>18</issue><spage>11444</spage><epage>11450</epage><pages>11444-11450</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Interactions between amphiphilic block copolymers and lipids are of medical interest for applications such as drug delivery and the restoration of damaged cell membranes. A series of monodisperse poly(ethylene oxide)-poly(butylene oxide) (EOBO) block copolymers were obtained with two ratios of hydrophilic/hydrophobic block lengths. We have explored the surface activity of EOBO at a clean interface and under 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayers as a simple cell membrane model. At the same subphase concentration, EOBO achieved higher equilibrium surface pressures under DPPC compared to a bare interface, and the surface activity was improved with longer poly(butylene oxide) blocks. Further investigation of the DPPC/EOBO monolayers showed that combined films exhibited similar surface rheology compared to pure DPPC at the same surface pressures. DPPC/EOBO phase separation was observed in fluorescently doped monolayers, and within the liquid-expanded liquid-condensed coexistence region for DPPC, EOBO did not drastically alter the liquid-condensed domain shapes. Grazing incidence X-ray diffraction (GIXD) and X-ray reflectivity (XRR) quantitatively confirmed that the lattice spacings and tilt of DPPC in lipid-rich regions of the monolayer were nearly equivalent to those of a pure DPPC monolayer at the same surface pressures.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>21834565</pmid><doi>10.1021/la2016879</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2011-09, Vol.27 (18), p.11444-11450
issn 0743-7463
1520-5827
language eng
recordid cdi_osti_scitechconnect_1028503
source MEDLINE; American Chemical Society Journals
subjects 1,2-Dipalmitoylphosphatidylcholine - chemistry
CELL MEMBRANES
Chemistry
Colloidal state and disperse state
COPOLYMERS
Epoxy Compounds - chemistry
Exact sciences and technology
General and physical chemistry
Interfaces: Adsorption, Reactions, Films, Forces
LIPIDS
MATERIALS SCIENCE
Membranes
Microscopy, Fluorescence
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Polyethylene Glycols - chemistry
REFLECTIVITY
RHEOLOGY
Surface physical chemistry
Surface Properties
X-RAY DIFFRACTION
title Insertion Mechanism of a Poly(ethylene oxide)-poly(butylene oxide) Block Copolymer into a DPPC Monolayer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T15%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insertion%20Mechanism%20of%20a%20Poly(ethylene%20oxide)-poly(butylene%20oxide)%20Block%20Copolymer%20into%20a%20DPPC%20Monolayer&rft.jtitle=Langmuir&rft.au=Leiske,%20Danielle%20L&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2011-09-20&rft.volume=27&rft.issue=18&rft.spage=11444&rft.epage=11450&rft.pages=11444-11450&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la2016879&rft_dat=%3Cproquest_osti_%3E889445610%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889445610&rft_id=info:pmid/21834565&rfr_iscdi=true