Characterization, Genetic Variation, and Combining Ability of Maize Traits Relevant to the Production of Cellulosic Ethanol

Maize (Zea mays L.) stover has been identified as an important feedstock for the production of cellulosic ethanol. Our objectives were to measure hybrid effect and combining ability patterns of traits related to cellulosic ethanol production, determine if germplasm and mutations used for silage prod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crop science 2009-01, Vol.49 (1), p.85-98
Hauptverfasser: Lorenz, A.J, Coors, J.G, De Leon, N, Wolfrum E.J, Hames, B.R, Sluiter, A.D, Weimer, P.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 98
container_issue 1
container_start_page 85
container_title Crop science
container_volume 49
creator Lorenz, A.J
Coors, J.G
De Leon, N
Wolfrum E.J
Hames, B.R
Sluiter, A.D
Weimer, P.J
description Maize (Zea mays L.) stover has been identified as an important feedstock for the production of cellulosic ethanol. Our objectives were to measure hybrid effect and combining ability patterns of traits related to cellulosic ethanol production, determine if germplasm and mutations used for silage production would also be beneficial for feedstock production, and examine relationships between traits that are relevant to selective breeding. We evaluated grain hybrids, germplasm bred for silage production, brown-midrib hybrids, and a leafy hybrid. Yield and composition traits were measured in four environments. There was a 53% difference in stover yield between commercial grain hybrids that were equivalent for other production-related traits. Silage germplasm may be useful for increasing stover yield and reducing lignin concentration. We found much more variation among hybrids than either in vitro ruminal fermentability or polysaccharide concentration. Correlations between traits were mostly favorable or nonexistent. Our results suggest that utilizing standing genetic variation of maize in breeding programs could substantially increase the amount of biofuels produced from stover per unit area of land.
doi_str_mv 10.2135/cropsci2008.06.0306
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1023063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20290535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4836-70ad4dde52fc0b61baaec23607fa8b996d4bb9c3feb2804751180b78a4ff05203</originalsourceid><addsrcrecordid>eNqNkcFu1DAURSMEEkPhC1hgIcGKDM92EifLKmpLpaJWnRaxs14cp-MqY09tD2jKz-OQUWHJypJ13rn2u1n2lsKSUV5-Vt5tgzIMoF5CtQQO1bNsQQte5lCV_Hm2AKA0pzX__jJ7FcI9AIhGlIvsV7tGjypqbx4xGmc_kTNtdTSKfENvDldoe9K6TWessXfkuDOjiXviBvIVzaMmNx5NDORaj_oH2kiiI3GtyZV3_U5Nhglt9TjuRheS-SSu0brxdfZiwDHoN4fzKLs9Pblpv-QXl2fn7fFFroqaV7kA7Iu-1yUbFHQV7RC1YrwCMWDdNU3VF13XKD7ojtVQiJLSGjpRYzEMUDLgR9n72etCNDLtKWq1Vs5araKkwNK2eII-ztDWu4edDlFuTFDpzWi12wXJgDVQ8vKv7Qm8dztv0wckpwVQEH8i-QylZkLwepBbbzbo9ylPTpXJfyqTUMmpsjT14aDGoHAcPFplwtMoo1RwUdeJO525n2bU-_9Ry3bVsvb68mrVnk_3UB0C382iAZ3EO5_CblcMKAdaNoVoOP8NWIu3LA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>314010720</pqid></control><display><type>article</type><title>Characterization, Genetic Variation, and Combining Ability of Maize Traits Relevant to the Production of Cellulosic Ethanol</title><source>Wiley Journals</source><source>Alma/SFX Local Collection</source><creator>Lorenz, A.J ; Coors, J.G ; De Leon, N ; Wolfrum E.J ; Hames, B.R ; Sluiter, A.D ; Weimer, P.J</creator><creatorcontrib>Lorenz, A.J ; Coors, J.G ; De Leon, N ; Wolfrum E.J ; Hames, B.R ; Sluiter, A.D ; Weimer, P.J ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>Maize (Zea mays L.) stover has been identified as an important feedstock for the production of cellulosic ethanol. Our objectives were to measure hybrid effect and combining ability patterns of traits related to cellulosic ethanol production, determine if germplasm and mutations used for silage production would also be beneficial for feedstock production, and examine relationships between traits that are relevant to selective breeding. We evaluated grain hybrids, germplasm bred for silage production, brown-midrib hybrids, and a leafy hybrid. Yield and composition traits were measured in four environments. There was a 53% difference in stover yield between commercial grain hybrids that were equivalent for other production-related traits. Silage germplasm may be useful for increasing stover yield and reducing lignin concentration. We found much more variation among hybrids than either in vitro ruminal fermentability or polysaccharide concentration. Correlations between traits were mostly favorable or nonexistent. Our results suggest that utilizing standing genetic variation of maize in breeding programs could substantially increase the amount of biofuels produced from stover per unit area of land.</description><identifier>ISSN: 0011-183X</identifier><identifier>EISSN: 1435-0653</identifier><identifier>DOI: 10.2135/cropsci2008.06.0306</identifier><identifier>CODEN: CRPSAY</identifier><language>eng</language><publisher>Madison: Crop Science Society of America</publisher><subject>09 BIOMASS FUELS ; AGRICULTURAL WASTES ; Agronomy. Soil science and plant productions ; BASIC BIOLOGICAL SCIENCES ; Biodiesel fuels ; Bioenergy ; BIOFUELS ; Biological and medical sciences ; Biomass ; BREEDING ; cellulose ; CELLULOSIC ETHANOL ; Corn ; corn silage ; corn stover ; Ethanol ; ethanol production ; Fundamental and applied biological sciences. Psychology ; general combining ability ; Genetic diversity ; genetic variation ; GENETICS ; Genetics and breeding of economic plants ; germplasm ; Grasses ; Heterosis. Floral biology applications: apomixy, male sterility, incompatibility, varia ; Hybrids ; IN VITRO ; in vitro digestibility ; LIGNIN ; MAIZE ; MUTATIONS ; Nonfiction ; Plant breeding: fundamental aspects and methodology ; POLYSACCHARIDES ; PRODUCTION ; Selective breeding ; Silage ; Stover ; Zea mays</subject><ispartof>Crop science, 2009-01, Vol.49 (1), p.85-98</ispartof><rights>Crop Science Society of America</rights><rights>2009 INIST-CNRS</rights><rights>Copyright American Society of Agronomy Jan/Feb 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4836-70ad4dde52fc0b61baaec23607fa8b996d4bb9c3feb2804751180b78a4ff05203</citedby><cites>FETCH-LOGICAL-c4836-70ad4dde52fc0b61baaec23607fa8b996d4bb9c3feb2804751180b78a4ff05203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.2135%2Fcropsci2008.06.0306$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.2135%2Fcropsci2008.06.0306$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21173788$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1023063$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lorenz, A.J</creatorcontrib><creatorcontrib>Coors, J.G</creatorcontrib><creatorcontrib>De Leon, N</creatorcontrib><creatorcontrib>Wolfrum E.J</creatorcontrib><creatorcontrib>Hames, B.R</creatorcontrib><creatorcontrib>Sluiter, A.D</creatorcontrib><creatorcontrib>Weimer, P.J</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Characterization, Genetic Variation, and Combining Ability of Maize Traits Relevant to the Production of Cellulosic Ethanol</title><title>Crop science</title><description>Maize (Zea mays L.) stover has been identified as an important feedstock for the production of cellulosic ethanol. Our objectives were to measure hybrid effect and combining ability patterns of traits related to cellulosic ethanol production, determine if germplasm and mutations used for silage production would also be beneficial for feedstock production, and examine relationships between traits that are relevant to selective breeding. We evaluated grain hybrids, germplasm bred for silage production, brown-midrib hybrids, and a leafy hybrid. Yield and composition traits were measured in four environments. There was a 53% difference in stover yield between commercial grain hybrids that were equivalent for other production-related traits. Silage germplasm may be useful for increasing stover yield and reducing lignin concentration. We found much more variation among hybrids than either in vitro ruminal fermentability or polysaccharide concentration. Correlations between traits were mostly favorable or nonexistent. Our results suggest that utilizing standing genetic variation of maize in breeding programs could substantially increase the amount of biofuels produced from stover per unit area of land.</description><subject>09 BIOMASS FUELS</subject><subject>AGRICULTURAL WASTES</subject><subject>Agronomy. Soil science and plant productions</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biodiesel fuels</subject><subject>Bioenergy</subject><subject>BIOFUELS</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>BREEDING</subject><subject>cellulose</subject><subject>CELLULOSIC ETHANOL</subject><subject>Corn</subject><subject>corn silage</subject><subject>corn stover</subject><subject>Ethanol</subject><subject>ethanol production</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>general combining ability</subject><subject>Genetic diversity</subject><subject>genetic variation</subject><subject>GENETICS</subject><subject>Genetics and breeding of economic plants</subject><subject>germplasm</subject><subject>Grasses</subject><subject>Heterosis. Floral biology applications: apomixy, male sterility, incompatibility, varia</subject><subject>Hybrids</subject><subject>IN VITRO</subject><subject>in vitro digestibility</subject><subject>LIGNIN</subject><subject>MAIZE</subject><subject>MUTATIONS</subject><subject>Nonfiction</subject><subject>Plant breeding: fundamental aspects and methodology</subject><subject>POLYSACCHARIDES</subject><subject>PRODUCTION</subject><subject>Selective breeding</subject><subject>Silage</subject><subject>Stover</subject><subject>Zea mays</subject><issn>0011-183X</issn><issn>1435-0653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkcFu1DAURSMEEkPhC1hgIcGKDM92EifLKmpLpaJWnRaxs14cp-MqY09tD2jKz-OQUWHJypJ13rn2u1n2lsKSUV5-Vt5tgzIMoF5CtQQO1bNsQQte5lCV_Hm2AKA0pzX__jJ7FcI9AIhGlIvsV7tGjypqbx4xGmc_kTNtdTSKfENvDldoe9K6TWessXfkuDOjiXviBvIVzaMmNx5NDORaj_oH2kiiI3GtyZV3_U5Nhglt9TjuRheS-SSu0brxdfZiwDHoN4fzKLs9Pblpv-QXl2fn7fFFroqaV7kA7Iu-1yUbFHQV7RC1YrwCMWDdNU3VF13XKD7ojtVQiJLSGjpRYzEMUDLgR9n72etCNDLtKWq1Vs5araKkwNK2eII-ztDWu4edDlFuTFDpzWi12wXJgDVQ8vKv7Qm8dztv0wckpwVQEH8i-QylZkLwepBbbzbo9ylPTpXJfyqTUMmpsjT14aDGoHAcPFplwtMoo1RwUdeJO525n2bU-_9Ry3bVsvb68mrVnk_3UB0C382iAZ3EO5_CblcMKAdaNoVoOP8NWIu3LA</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Lorenz, A.J</creator><creator>Coors, J.G</creator><creator>De Leon, N</creator><creator>Wolfrum E.J</creator><creator>Hames, B.R</creator><creator>Sluiter, A.D</creator><creator>Weimer, P.J</creator><general>Crop Science Society of America</general><general>American Society of Agronomy</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>OTOTI</scope></search><sort><creationdate>200901</creationdate><title>Characterization, Genetic Variation, and Combining Ability of Maize Traits Relevant to the Production of Cellulosic Ethanol</title><author>Lorenz, A.J ; Coors, J.G ; De Leon, N ; Wolfrum E.J ; Hames, B.R ; Sluiter, A.D ; Weimer, P.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4836-70ad4dde52fc0b61baaec23607fa8b996d4bb9c3feb2804751180b78a4ff05203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>09 BIOMASS FUELS</topic><topic>AGRICULTURAL WASTES</topic><topic>Agronomy. Soil science and plant productions</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biodiesel fuels</topic><topic>Bioenergy</topic><topic>BIOFUELS</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>BREEDING</topic><topic>cellulose</topic><topic>CELLULOSIC ETHANOL</topic><topic>Corn</topic><topic>corn silage</topic><topic>corn stover</topic><topic>Ethanol</topic><topic>ethanol production</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>general combining ability</topic><topic>Genetic diversity</topic><topic>genetic variation</topic><topic>GENETICS</topic><topic>Genetics and breeding of economic plants</topic><topic>germplasm</topic><topic>Grasses</topic><topic>Heterosis. Floral biology applications: apomixy, male sterility, incompatibility, varia</topic><topic>Hybrids</topic><topic>IN VITRO</topic><topic>in vitro digestibility</topic><topic>LIGNIN</topic><topic>MAIZE</topic><topic>MUTATIONS</topic><topic>Nonfiction</topic><topic>Plant breeding: fundamental aspects and methodology</topic><topic>POLYSACCHARIDES</topic><topic>PRODUCTION</topic><topic>Selective breeding</topic><topic>Silage</topic><topic>Stover</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lorenz, A.J</creatorcontrib><creatorcontrib>Coors, J.G</creatorcontrib><creatorcontrib>De Leon, N</creatorcontrib><creatorcontrib>Wolfrum E.J</creatorcontrib><creatorcontrib>Hames, B.R</creatorcontrib><creatorcontrib>Sluiter, A.D</creatorcontrib><creatorcontrib>Weimer, P.J</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Crop science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lorenz, A.J</au><au>Coors, J.G</au><au>De Leon, N</au><au>Wolfrum E.J</au><au>Hames, B.R</au><au>Sluiter, A.D</au><au>Weimer, P.J</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization, Genetic Variation, and Combining Ability of Maize Traits Relevant to the Production of Cellulosic Ethanol</atitle><jtitle>Crop science</jtitle><date>2009-01</date><risdate>2009</risdate><volume>49</volume><issue>1</issue><spage>85</spage><epage>98</epage><pages>85-98</pages><issn>0011-183X</issn><eissn>1435-0653</eissn><coden>CRPSAY</coden><abstract>Maize (Zea mays L.) stover has been identified as an important feedstock for the production of cellulosic ethanol. Our objectives were to measure hybrid effect and combining ability patterns of traits related to cellulosic ethanol production, determine if germplasm and mutations used for silage production would also be beneficial for feedstock production, and examine relationships between traits that are relevant to selective breeding. We evaluated grain hybrids, germplasm bred for silage production, brown-midrib hybrids, and a leafy hybrid. Yield and composition traits were measured in four environments. There was a 53% difference in stover yield between commercial grain hybrids that were equivalent for other production-related traits. Silage germplasm may be useful for increasing stover yield and reducing lignin concentration. We found much more variation among hybrids than either in vitro ruminal fermentability or polysaccharide concentration. Correlations between traits were mostly favorable or nonexistent. Our results suggest that utilizing standing genetic variation of maize in breeding programs could substantially increase the amount of biofuels produced from stover per unit area of land.</abstract><cop>Madison</cop><pub>Crop Science Society of America</pub><doi>10.2135/cropsci2008.06.0306</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0011-183X
ispartof Crop science, 2009-01, Vol.49 (1), p.85-98
issn 0011-183X
1435-0653
language eng
recordid cdi_osti_scitechconnect_1023063
source Wiley Journals; Alma/SFX Local Collection
subjects 09 BIOMASS FUELS
AGRICULTURAL WASTES
Agronomy. Soil science and plant productions
BASIC BIOLOGICAL SCIENCES
Biodiesel fuels
Bioenergy
BIOFUELS
Biological and medical sciences
Biomass
BREEDING
cellulose
CELLULOSIC ETHANOL
Corn
corn silage
corn stover
Ethanol
ethanol production
Fundamental and applied biological sciences. Psychology
general combining ability
Genetic diversity
genetic variation
GENETICS
Genetics and breeding of economic plants
germplasm
Grasses
Heterosis. Floral biology applications: apomixy, male sterility, incompatibility, varia
Hybrids
IN VITRO
in vitro digestibility
LIGNIN
MAIZE
MUTATIONS
Nonfiction
Plant breeding: fundamental aspects and methodology
POLYSACCHARIDES
PRODUCTION
Selective breeding
Silage
Stover
Zea mays
title Characterization, Genetic Variation, and Combining Ability of Maize Traits Relevant to the Production of Cellulosic Ethanol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A52%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization,%20Genetic%20Variation,%20and%20Combining%20Ability%20of%20Maize%20Traits%20Relevant%20to%20the%20Production%20of%20Cellulosic%20Ethanol&rft.jtitle=Crop%20science&rft.au=Lorenz,%20A.J&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2009-01&rft.volume=49&rft.issue=1&rft.spage=85&rft.epage=98&rft.pages=85-98&rft.issn=0011-183X&rft.eissn=1435-0653&rft.coden=CRPSAY&rft_id=info:doi/10.2135/cropsci2008.06.0306&rft_dat=%3Cproquest_osti_%3E20290535%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=314010720&rft_id=info:pmid/&rfr_iscdi=true