Characterization, Genetic Variation, and Combining Ability of Maize Traits Relevant to the Production of Cellulosic Ethanol
Maize (Zea mays L.) stover has been identified as an important feedstock for the production of cellulosic ethanol. Our objectives were to measure hybrid effect and combining ability patterns of traits related to cellulosic ethanol production, determine if germplasm and mutations used for silage prod...
Gespeichert in:
Veröffentlicht in: | Crop science 2009-01, Vol.49 (1), p.85-98 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 98 |
---|---|
container_issue | 1 |
container_start_page | 85 |
container_title | Crop science |
container_volume | 49 |
creator | Lorenz, A.J Coors, J.G De Leon, N Wolfrum E.J Hames, B.R Sluiter, A.D Weimer, P.J |
description | Maize (Zea mays L.) stover has been identified as an important feedstock for the production of cellulosic ethanol. Our objectives were to measure hybrid effect and combining ability patterns of traits related to cellulosic ethanol production, determine if germplasm and mutations used for silage production would also be beneficial for feedstock production, and examine relationships between traits that are relevant to selective breeding. We evaluated grain hybrids, germplasm bred for silage production, brown-midrib hybrids, and a leafy hybrid. Yield and composition traits were measured in four environments. There was a 53% difference in stover yield between commercial grain hybrids that were equivalent for other production-related traits. Silage germplasm may be useful for increasing stover yield and reducing lignin concentration. We found much more variation among hybrids than either in vitro ruminal fermentability or polysaccharide concentration. Correlations between traits were mostly favorable or nonexistent. Our results suggest that utilizing standing genetic variation of maize in breeding programs could substantially increase the amount of biofuels produced from stover per unit area of land. |
doi_str_mv | 10.2135/cropsci2008.06.0306 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1023063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20290535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4836-70ad4dde52fc0b61baaec23607fa8b996d4bb9c3feb2804751180b78a4ff05203</originalsourceid><addsrcrecordid>eNqNkcFu1DAURSMEEkPhC1hgIcGKDM92EifLKmpLpaJWnRaxs14cp-MqY09tD2jKz-OQUWHJypJ13rn2u1n2lsKSUV5-Vt5tgzIMoF5CtQQO1bNsQQte5lCV_Hm2AKA0pzX__jJ7FcI9AIhGlIvsV7tGjypqbx4xGmc_kTNtdTSKfENvDldoe9K6TWessXfkuDOjiXviBvIVzaMmNx5NDORaj_oH2kiiI3GtyZV3_U5Nhglt9TjuRheS-SSu0brxdfZiwDHoN4fzKLs9Pblpv-QXl2fn7fFFroqaV7kA7Iu-1yUbFHQV7RC1YrwCMWDdNU3VF13XKD7ojtVQiJLSGjpRYzEMUDLgR9n72etCNDLtKWq1Vs5araKkwNK2eII-ztDWu4edDlFuTFDpzWi12wXJgDVQ8vKv7Qm8dztv0wckpwVQEH8i-QylZkLwepBbbzbo9ylPTpXJfyqTUMmpsjT14aDGoHAcPFplwtMoo1RwUdeJO525n2bU-_9Ry3bVsvb68mrVnk_3UB0C382iAZ3EO5_CblcMKAdaNoVoOP8NWIu3LA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>314010720</pqid></control><display><type>article</type><title>Characterization, Genetic Variation, and Combining Ability of Maize Traits Relevant to the Production of Cellulosic Ethanol</title><source>Wiley Journals</source><source>Alma/SFX Local Collection</source><creator>Lorenz, A.J ; Coors, J.G ; De Leon, N ; Wolfrum E.J ; Hames, B.R ; Sluiter, A.D ; Weimer, P.J</creator><creatorcontrib>Lorenz, A.J ; Coors, J.G ; De Leon, N ; Wolfrum E.J ; Hames, B.R ; Sluiter, A.D ; Weimer, P.J ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>Maize (Zea mays L.) stover has been identified as an important feedstock for the production of cellulosic ethanol. Our objectives were to measure hybrid effect and combining ability patterns of traits related to cellulosic ethanol production, determine if germplasm and mutations used for silage production would also be beneficial for feedstock production, and examine relationships between traits that are relevant to selective breeding. We evaluated grain hybrids, germplasm bred for silage production, brown-midrib hybrids, and a leafy hybrid. Yield and composition traits were measured in four environments. There was a 53% difference in stover yield between commercial grain hybrids that were equivalent for other production-related traits. Silage germplasm may be useful for increasing stover yield and reducing lignin concentration. We found much more variation among hybrids than either in vitro ruminal fermentability or polysaccharide concentration. Correlations between traits were mostly favorable or nonexistent. Our results suggest that utilizing standing genetic variation of maize in breeding programs could substantially increase the amount of biofuels produced from stover per unit area of land.</description><identifier>ISSN: 0011-183X</identifier><identifier>EISSN: 1435-0653</identifier><identifier>DOI: 10.2135/cropsci2008.06.0306</identifier><identifier>CODEN: CRPSAY</identifier><language>eng</language><publisher>Madison: Crop Science Society of America</publisher><subject>09 BIOMASS FUELS ; AGRICULTURAL WASTES ; Agronomy. Soil science and plant productions ; BASIC BIOLOGICAL SCIENCES ; Biodiesel fuels ; Bioenergy ; BIOFUELS ; Biological and medical sciences ; Biomass ; BREEDING ; cellulose ; CELLULOSIC ETHANOL ; Corn ; corn silage ; corn stover ; Ethanol ; ethanol production ; Fundamental and applied biological sciences. Psychology ; general combining ability ; Genetic diversity ; genetic variation ; GENETICS ; Genetics and breeding of economic plants ; germplasm ; Grasses ; Heterosis. Floral biology applications: apomixy, male sterility, incompatibility, varia ; Hybrids ; IN VITRO ; in vitro digestibility ; LIGNIN ; MAIZE ; MUTATIONS ; Nonfiction ; Plant breeding: fundamental aspects and methodology ; POLYSACCHARIDES ; PRODUCTION ; Selective breeding ; Silage ; Stover ; Zea mays</subject><ispartof>Crop science, 2009-01, Vol.49 (1), p.85-98</ispartof><rights>Crop Science Society of America</rights><rights>2009 INIST-CNRS</rights><rights>Copyright American Society of Agronomy Jan/Feb 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4836-70ad4dde52fc0b61baaec23607fa8b996d4bb9c3feb2804751180b78a4ff05203</citedby><cites>FETCH-LOGICAL-c4836-70ad4dde52fc0b61baaec23607fa8b996d4bb9c3feb2804751180b78a4ff05203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.2135%2Fcropsci2008.06.0306$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.2135%2Fcropsci2008.06.0306$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21173788$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1023063$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lorenz, A.J</creatorcontrib><creatorcontrib>Coors, J.G</creatorcontrib><creatorcontrib>De Leon, N</creatorcontrib><creatorcontrib>Wolfrum E.J</creatorcontrib><creatorcontrib>Hames, B.R</creatorcontrib><creatorcontrib>Sluiter, A.D</creatorcontrib><creatorcontrib>Weimer, P.J</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Characterization, Genetic Variation, and Combining Ability of Maize Traits Relevant to the Production of Cellulosic Ethanol</title><title>Crop science</title><description>Maize (Zea mays L.) stover has been identified as an important feedstock for the production of cellulosic ethanol. Our objectives were to measure hybrid effect and combining ability patterns of traits related to cellulosic ethanol production, determine if germplasm and mutations used for silage production would also be beneficial for feedstock production, and examine relationships between traits that are relevant to selective breeding. We evaluated grain hybrids, germplasm bred for silage production, brown-midrib hybrids, and a leafy hybrid. Yield and composition traits were measured in four environments. There was a 53% difference in stover yield between commercial grain hybrids that were equivalent for other production-related traits. Silage germplasm may be useful for increasing stover yield and reducing lignin concentration. We found much more variation among hybrids than either in vitro ruminal fermentability or polysaccharide concentration. Correlations between traits were mostly favorable or nonexistent. Our results suggest that utilizing standing genetic variation of maize in breeding programs could substantially increase the amount of biofuels produced from stover per unit area of land.</description><subject>09 BIOMASS FUELS</subject><subject>AGRICULTURAL WASTES</subject><subject>Agronomy. Soil science and plant productions</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biodiesel fuels</subject><subject>Bioenergy</subject><subject>BIOFUELS</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>BREEDING</subject><subject>cellulose</subject><subject>CELLULOSIC ETHANOL</subject><subject>Corn</subject><subject>corn silage</subject><subject>corn stover</subject><subject>Ethanol</subject><subject>ethanol production</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>general combining ability</subject><subject>Genetic diversity</subject><subject>genetic variation</subject><subject>GENETICS</subject><subject>Genetics and breeding of economic plants</subject><subject>germplasm</subject><subject>Grasses</subject><subject>Heterosis. Floral biology applications: apomixy, male sterility, incompatibility, varia</subject><subject>Hybrids</subject><subject>IN VITRO</subject><subject>in vitro digestibility</subject><subject>LIGNIN</subject><subject>MAIZE</subject><subject>MUTATIONS</subject><subject>Nonfiction</subject><subject>Plant breeding: fundamental aspects and methodology</subject><subject>POLYSACCHARIDES</subject><subject>PRODUCTION</subject><subject>Selective breeding</subject><subject>Silage</subject><subject>Stover</subject><subject>Zea mays</subject><issn>0011-183X</issn><issn>1435-0653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkcFu1DAURSMEEkPhC1hgIcGKDM92EifLKmpLpaJWnRaxs14cp-MqY09tD2jKz-OQUWHJypJ13rn2u1n2lsKSUV5-Vt5tgzIMoF5CtQQO1bNsQQte5lCV_Hm2AKA0pzX__jJ7FcI9AIhGlIvsV7tGjypqbx4xGmc_kTNtdTSKfENvDldoe9K6TWessXfkuDOjiXviBvIVzaMmNx5NDORaj_oH2kiiI3GtyZV3_U5Nhglt9TjuRheS-SSu0brxdfZiwDHoN4fzKLs9Pblpv-QXl2fn7fFFroqaV7kA7Iu-1yUbFHQV7RC1YrwCMWDdNU3VF13XKD7ojtVQiJLSGjpRYzEMUDLgR9n72etCNDLtKWq1Vs5araKkwNK2eII-ztDWu4edDlFuTFDpzWi12wXJgDVQ8vKv7Qm8dztv0wckpwVQEH8i-QylZkLwepBbbzbo9ylPTpXJfyqTUMmpsjT14aDGoHAcPFplwtMoo1RwUdeJO525n2bU-_9Ry3bVsvb68mrVnk_3UB0C382iAZ3EO5_CblcMKAdaNoVoOP8NWIu3LA</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Lorenz, A.J</creator><creator>Coors, J.G</creator><creator>De Leon, N</creator><creator>Wolfrum E.J</creator><creator>Hames, B.R</creator><creator>Sluiter, A.D</creator><creator>Weimer, P.J</creator><general>Crop Science Society of America</general><general>American Society of Agronomy</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>OTOTI</scope></search><sort><creationdate>200901</creationdate><title>Characterization, Genetic Variation, and Combining Ability of Maize Traits Relevant to the Production of Cellulosic Ethanol</title><author>Lorenz, A.J ; Coors, J.G ; De Leon, N ; Wolfrum E.J ; Hames, B.R ; Sluiter, A.D ; Weimer, P.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4836-70ad4dde52fc0b61baaec23607fa8b996d4bb9c3feb2804751180b78a4ff05203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>09 BIOMASS FUELS</topic><topic>AGRICULTURAL WASTES</topic><topic>Agronomy. Soil science and plant productions</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biodiesel fuels</topic><topic>Bioenergy</topic><topic>BIOFUELS</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>BREEDING</topic><topic>cellulose</topic><topic>CELLULOSIC ETHANOL</topic><topic>Corn</topic><topic>corn silage</topic><topic>corn stover</topic><topic>Ethanol</topic><topic>ethanol production</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>general combining ability</topic><topic>Genetic diversity</topic><topic>genetic variation</topic><topic>GENETICS</topic><topic>Genetics and breeding of economic plants</topic><topic>germplasm</topic><topic>Grasses</topic><topic>Heterosis. Floral biology applications: apomixy, male sterility, incompatibility, varia</topic><topic>Hybrids</topic><topic>IN VITRO</topic><topic>in vitro digestibility</topic><topic>LIGNIN</topic><topic>MAIZE</topic><topic>MUTATIONS</topic><topic>Nonfiction</topic><topic>Plant breeding: fundamental aspects and methodology</topic><topic>POLYSACCHARIDES</topic><topic>PRODUCTION</topic><topic>Selective breeding</topic><topic>Silage</topic><topic>Stover</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lorenz, A.J</creatorcontrib><creatorcontrib>Coors, J.G</creatorcontrib><creatorcontrib>De Leon, N</creatorcontrib><creatorcontrib>Wolfrum E.J</creatorcontrib><creatorcontrib>Hames, B.R</creatorcontrib><creatorcontrib>Sluiter, A.D</creatorcontrib><creatorcontrib>Weimer, P.J</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Crop science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lorenz, A.J</au><au>Coors, J.G</au><au>De Leon, N</au><au>Wolfrum E.J</au><au>Hames, B.R</au><au>Sluiter, A.D</au><au>Weimer, P.J</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization, Genetic Variation, and Combining Ability of Maize Traits Relevant to the Production of Cellulosic Ethanol</atitle><jtitle>Crop science</jtitle><date>2009-01</date><risdate>2009</risdate><volume>49</volume><issue>1</issue><spage>85</spage><epage>98</epage><pages>85-98</pages><issn>0011-183X</issn><eissn>1435-0653</eissn><coden>CRPSAY</coden><abstract>Maize (Zea mays L.) stover has been identified as an important feedstock for the production of cellulosic ethanol. Our objectives were to measure hybrid effect and combining ability patterns of traits related to cellulosic ethanol production, determine if germplasm and mutations used for silage production would also be beneficial for feedstock production, and examine relationships between traits that are relevant to selective breeding. We evaluated grain hybrids, germplasm bred for silage production, brown-midrib hybrids, and a leafy hybrid. Yield and composition traits were measured in four environments. There was a 53% difference in stover yield between commercial grain hybrids that were equivalent for other production-related traits. Silage germplasm may be useful for increasing stover yield and reducing lignin concentration. We found much more variation among hybrids than either in vitro ruminal fermentability or polysaccharide concentration. Correlations between traits were mostly favorable or nonexistent. Our results suggest that utilizing standing genetic variation of maize in breeding programs could substantially increase the amount of biofuels produced from stover per unit area of land.</abstract><cop>Madison</cop><pub>Crop Science Society of America</pub><doi>10.2135/cropsci2008.06.0306</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0011-183X |
ispartof | Crop science, 2009-01, Vol.49 (1), p.85-98 |
issn | 0011-183X 1435-0653 |
language | eng |
recordid | cdi_osti_scitechconnect_1023063 |
source | Wiley Journals; Alma/SFX Local Collection |
subjects | 09 BIOMASS FUELS AGRICULTURAL WASTES Agronomy. Soil science and plant productions BASIC BIOLOGICAL SCIENCES Biodiesel fuels Bioenergy BIOFUELS Biological and medical sciences Biomass BREEDING cellulose CELLULOSIC ETHANOL Corn corn silage corn stover Ethanol ethanol production Fundamental and applied biological sciences. Psychology general combining ability Genetic diversity genetic variation GENETICS Genetics and breeding of economic plants germplasm Grasses Heterosis. Floral biology applications: apomixy, male sterility, incompatibility, varia Hybrids IN VITRO in vitro digestibility LIGNIN MAIZE MUTATIONS Nonfiction Plant breeding: fundamental aspects and methodology POLYSACCHARIDES PRODUCTION Selective breeding Silage Stover Zea mays |
title | Characterization, Genetic Variation, and Combining Ability of Maize Traits Relevant to the Production of Cellulosic Ethanol |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A52%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization,%20Genetic%20Variation,%20and%20Combining%20Ability%20of%20Maize%20Traits%20Relevant%20to%20the%20Production%20of%20Cellulosic%20Ethanol&rft.jtitle=Crop%20science&rft.au=Lorenz,%20A.J&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2009-01&rft.volume=49&rft.issue=1&rft.spage=85&rft.epage=98&rft.pages=85-98&rft.issn=0011-183X&rft.eissn=1435-0653&rft.coden=CRPSAY&rft_id=info:doi/10.2135/cropsci2008.06.0306&rft_dat=%3Cproquest_osti_%3E20290535%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=314010720&rft_id=info:pmid/&rfr_iscdi=true |